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THE PERFORMANCE OF PRECONDITIONED ITERATIVE METHODS
IN COMPUTATIONAL ELECTROMAGNETICS

Charles Frederick Smith, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1987

The numerical solution of electromagnetic scattering

problems involves the projection of an exact equation onto a

finite-dimensional space, and the solution of the resulting

matrix equation. By using iterative algorithms, the

analysis of scatterers that are an order of magnitude larger

electrically may be feasible.

Two approaches to achieving the solutions in less time

are examined and applied to several typical electromagnetic

scattering problems.

First, through extensions to the conjugate gradient and

biconjugate gradient algorithms, multiple excitations for

the same matrix can be simultaneously treated. Depending on

the type of problem, the number of excitations, and the

algorithm employed, substantial time savings may be

achieved.

Second, the performance of preconditioning combined with

the conjugate gradient, biconjugate gradient, and Chebyshev

algorithms is evaluated for typical electromagnetic

scattering problems. Preconditioners based on significant

structural features of the matrix are able to reduce the

overall execution time.
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1. INTRODUCTION

Since the advent of radar during the second World War,

the characterization of the scattering of electromagnetic

waves by a variety of objects has been investigated [1.

Solving the scattering problem for physical structures which

do not conform to a constant metric surface in some

coordinate system has become feasible only since the

development of the digital computer and the method of

moments [2]. With this method, the continuous problem with

infinite degrees of freedom is converted to a manageable

size discrete problem. The size, in terms of wavelengths,

of objects capable of being treated by this method has been

continously enlarged by advances in computing machinery.

However, this advance has been somewhat thwarted by the use

of higher frequencies of the electromagnetic spectrum.

Large objects, such as aircraft, have effectively become

bigger in terms cf wavelengths. The use of advanced

techniques to reduce the radar cross-section of aircraft

relies on accurate solutions not possible with simplistic

modeling methods. More rigorous modeling requires that the

scatterer be treated in finer detail and also as a whole,

rather than the sum of many parts. This translates into a

need for methods that enable the designer or analyst to

treat problems with many more unknown variables.

The solution or scattering problems has historically

been accomplished by first formulating the problem as a

Le lm~nV.
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Fredholm integral equation. The continuous prcblem is

discretized via the method of moments, yielding a large

matrix equation to be solved. It is also possible to

formulate the e problems in terms of differential equations,

which are treated by finite element methods. Research into

this approach shows much promise [3], but large matrices may

also result from this approach.

The definition of a large matrix changes with each

announcement of more fast access memory on the latest

computer. If a square invertible matrix can fit in the

memory of the computer, Gaussian elimination [4] is

generally recommended. For matrices which are sparse (i.e.

a majority of the elements are zero), or have many redundant

elements in a certain structure, iterative methods may

extend the size of the matrix which may be treated.

Detailed guidance on when to use iterative methods for

electromagnetic problems has been established [5]. Chapter

Two examines three of the many possible iterative methods

and relates their performance to the eigenvalue spectrum of

the iteration matrix.

Preconditioning has been used extensively for lowering

the condition number [4] of ill-conditioned matrices arising

from finite-difference methods applied to various

differential equations [6]. For ill-conditioned systems,

preconditioning is necessary to achieve ac-'rate results.

Preconditioning may also be used to modify the eigenvalue

spectra of the iteration matrices to achieve the desired
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solution in less time, offering an improvement in

computational efficiency. Preconditioning methods are

reviewed in Chapter Four and the results of their

application to matrices arising from electrcm&inetic

scattering problems are presented in Chapter Five.

While the use of iterative methrds may enable one to

treat larger systems, this approach is not without its

disadvantages. One of the most significant of these is the

apparent inability to efficiently treat multiple

excitations. Chapter Three details extensions to two of the

iterative methods. By using these new methods, significant

time savings result.

This work builds on the previous efforts of others,

especially A. F. Peterson and C. H. Chan. It, by itself,

represents a small step towards the integrated study of the

physical problem, the formulation, and the method to solve

the formulation. In recognition of this fact, sugaestions

for future study are included in Chapter Six.

V,.

.. .s **.~,*/
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2. ITERATIVE METHODS

2.1. Introduction

Iw
The focus of this chapter is the theoretical properties

of three iterative methods. The three methods chosen have

some properti-s in common, but are significantly different

in many aspects and warrant further investigation when

applied to electromagnetic scattering problems. The methods

are the conjugate gradient method applied to the normal

equations (CGN), the complex biconjugate gradient method

(BCG), and the Chebyshev (CHEB) iterative algorithm.

The common goal of all three methods is the solution of

the matrix equation

Ax b (2.1),

where x is the desired solution vector, b is the excitation

vector (also known as the "right hand side"), and A is an

invertable square matrix of order n. Often the formulation

of an electromagnetic scattering problem is such that the

elements of A are not explicitly formed. This does not

impose any loss of generality since all three methods do not

use any explicit elements of A, but merely require the

product of A and some vector be computable. In all three

methods, let the error in the iterative solution at the nth
p

'A

, ,- **.- -, US ,, "o , - - .% . ' -U"" " - ' - . , -. ." - .. "-".".
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iteration be

en X xx (2.2),

and the residual be defined as

rn= b - Axn = Aen (2.3).

If an initial guess for the solution, xo, is given, then

ro = b - Ax o = Aeo (2.4),

so that ro is the initial residual. Throughout this

chapter, the initial guess shall be assumed to be the zero

vector unless otherwise stated. The effect of a non-zero

initial guess on the convergence of the algorithms will be

addressed later in this chapter. The iterative process may

be stopped when the latest estimate for the solution

satisfies a criterion for en , usually a matrix norm of the

form

2

ie~I 'N = < enNen > (2.5),

where < x,y > = xH y, and N is a Hermitian positive definite

matrix. H denotes the complex conjugate transpose. Since x

is unknown, e cannot be formed. However, r can be formed

and the norm of rn can be related to the norm of en. Since

the error and the residual at the nth iteration are related

by Equation (2.3), the norm of the error is given by

I JenI I < IIA-111 I i rnI I (2 .6).
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Equation (2.3) can also be used to obtain S

11ro0 1 < IAII Ii eoii (2.7),

and then the desired result is

< < I I IA- I rn I (2.8),I leoll - 1 ro i l

where any consistent matrix and vector norm is used. The 9

quantity I IA-1 11 I IAl I is known as the condition number of

A, K(A), which under the 2-norm is the ratio of the largest

t'o the smallest singular values of A [41. In these 0

iterative methods, the solution is updated by

Xn+1 = Xn + an Pn (2.9),

and thus the residuals can be related by

rn+1 = rn - an Apn (2.10).

S

This relationship is used to define a residual polynomial,

Rn (A),

n
rn= Rn(A) ro = 2 ci Ai ro co = 1 (2.11).

i=0

In all iterative methods for which Equations (2.9) through

(2.11) hold, the convergence properties for a given initial

residual are well known. These properties are addressed in

the rest of this chapter. In Chapter 4, the link between

the spectrum of the physical problem modeled, and the 0

mapping of it onto the spectrum of the iteraticn matrix,

LI
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will be shown. These two concepts determine the performance

of the iterative method when applied to electromagnetics

problems.

2.2 Conjugate Gradient Theory

The conjugate gradient method has been extensively

analyzed in the literature from various viewpoints.

Hestenes & Stiefel [7] introduced the method and showed two

of the properties of it, namely, the minimization of a

functional and the generation of an orthogonal sequence of

vectors. Stiefel [8] later showed the method was related to

the generation of an orthogonal sequence of polynomials.

The method can be viewed as the minimization of two

functionals [9] or a method based on orthogonal errors [10].

A large number of algorithms, including the original

conjugate gradient method and the conjugate gradient method

applied to the normal equations (CGN), can be obtained from

the general orthogonal error algorithm shown in Table 2.1.

The matrix B in that table is a Hermitian positive

definite, and the three sets of orthogonalities shown

result. This algorithm minimizes the error under the

B-norm, < Ben,en > in each iteration. If the matrix A is

Hermitian positive definite, B may be chosen to be A,

resalting in the original conjugate gradient algorithm.

However, the matrix A arising from the formulation of

electromagnetic scattering problems cannot be guaranteed to
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TABLE 2.1 
1

ORTHOGONAL ERROR A.LGORI THM AND RESULTING ORTHOGONALITIES.

Po =ro =b -Ax.

For k = 0,1,2,3 ... until convergence do

Xk+1 = Xk ak Pk

rk1= rjk - k Apk

Pk+1 = rk+1 - Pk 

End do

where

axk =< Bek,rk > /< BPk,pk >

= - < Bek+1.,rk+j. > / < Bek, rk >

The resulting orthogonalities are:

" Bek,Pi >= 0 i <k

"<Bek,r > =0 i <k

"BPk,Pi >=O0 i <k

II
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be Hermitian positive definite. The matrices AHA and AAH

are always Hermitian, so if A is not Hermitian, B can be

chosen to be either AHA or AA H  The choice of AHA is

equivalent to the normal equations

AHAx = AHb (2.12),

which minimizes the 2-norm of the residual at each

iteration, and gives the CGNR algorithm of Table 2.2. The

other choice for B leads to a algorithm known as CGNE [11],

which minimizes the norm of the error at each iteration.

This algorithm would take fewer iterations than CGNR to

reduce the norm of the error, en to some predetermined

stopping criterion. Likewise, CGNR would take fewer

iterations than CGNE to reduce the 2-norm of the residual

to a predetermined level. With the goal of an accurate

approximation to the solution x, CGNE appears to be the

algorithm of choice. But since the 2-norm of the error is

not computable, the question of when to stop the algorithm

and accept the solution becomes important to avoid

unnecessary iterations. Equation (2.8) provides an upper

bound to use for stopping the algorithm and accepting the

solution. But this requires an estimate of the condition

number of the iteration matrix, and the additional work in

the algorithm to get the estimate.

The convergence properties of conjugate gradient based

algorithms are well known [7,12,13], and are easily showr by

V |.' .7~.~~
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TABLE 2.2

CONJUGATE GRADIENT ALGORITHM FOR NORMAL EQUATIONS ,CGNR)
AND RESULTING ORTHOGONALITIES

Po = ho = AHro = AH(b - Axo)

For k = 0,1,2,3... until convergence do

Xk+1 = Xk + czk Pk

rk+1 = rk - ak APK

hk+l = AHrk+l

Pk+1 = hk+i - Pk Pk

End do

where

Cak = I IhkI 12 / I IApkJ 12

Pk = I Ihk+1i 12 / I Ihk 12

The resulting orthogonalities are:

< rk,APi > =0 i < k

< hk,hi > =0 i # k

< Apk,Api > =0 i # k

PI

P
". 

t- rV *. -.
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writing the residual polynomial for CGNR

rn = Rn(AAH) ro (2.13),

and letting {vi} be the orthonormal eigenvectors of AAH

associated with the real, positive eigenvalues, Xi. Then p

ro may be expanded as

N I
r° = Y yj vj (2.14),

j=1

with
I

Y= < ro,vj > (2.15),

which gives

N
rn = j Rn ( AAH) vj (2.16).

j=l

The quantity minimized by CGNR is

< ASAenen > = iIrnlI 2

N N

j=1 k=1

-- Iyj1 2 X Rn(%j) 1 (2.17),
j=1

where the residual polynomial is now written in the real
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variable X, with Ro(%) = 1 and Rn(O) = 1. Note that

N

I Iro 112  = 1 yJ 12  (2.18),
j=l

which is completely determined by the excitation and initial

guess, if one is used. The next iteration gives

N
I 1r,11 2 = E 1791 2  (. - ao Xj)2 (2.19).

j=1

This expression can be interpreted with the aid of Figure

2.1. CGNR choses ao and hence the slope of Rl(k) so the

weighted sum of the vertical distances squared at each of

the eigenvalues is minimized. R4 (), a polynomial of degree

4, will have its roots at the eigenvalues a AAH, giving

r4=0. Thus a system with N non-repeated eigenvalues will be

solved exactly in N iterations. If the eigenvalues are

"clustered", the zero of the residual polynomial within the

cluster will greatly reduce the contribution, in subsequent

residuals, of the eigenvectors associated with the

eigenvalues in the cluster. Also, if the eigenvector

decomposition of r in Equation (2.14) contains only n non-

vanishing 'Yj, the algorithm will converge in n iterations.

This result is true even though n may be significantly

smaller than the order of the system, N. Thus, to

accelerate the convergence rate of CGNR, the initial guess

must effectively eliminate the contribution of several

eigenvectors and not exuite any more eigenvectors. The

%f

Po %,~ 5 ~ ''b -~ ' ~ 'K.
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Residual
Polynomial

R4 (X

3

1. 2

R1 X

Figure 2.1 Residual polynomials of order zero, one, and
four, for an example system of order four.
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orthogonalities characteristic of algorithms based on the

orthogonal error procedure are true for infinite precision

arithmetic, but not for finite precision arithmetic. The

major effect of the loss of orthogonality is the loss of the

finite termination property, although accuracy of the

solution consistent with the number of digits of accuracy of

the computing machinery may still be obtained. With the

loss of orthogonality, CGNR becomes a true iterative

algorithm with slower convergence. One proposed method to

maintain the orthogonality involves the storage of all

previous vectors and reorthogonalization of selected vectors

when the detected loss of orthogonality exceeds a ',

predetermined limit [14]. The storage of these vectors in

out-of-core memory and retrieval of the necessary ones is a (

significant disadvantage, especially for large problems.

2.3 Biconjugate Gradient Theory

The biconjugate gradient algorithm in its most general

form [15] is shown in Table 2.3. The complex scalar an is

chosen to force the biorthogonality conditions between the

residual, rn, and another vector known as the biresidual,

in. an enforces

< rn+l1rn > = < rn+lr n > =0 (2.20).

p
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TABLE 2.3

GENERAL BICONJUGATE GRADIENT ALGORITHM
AND RESULTING ORTHOGONALITIES.

Po = ro= b - Axo

Po = ro

For k = 0,1,2,3... until convergence do

Xk+1 = Xk + c(k Pk

rk+1 = rk - (k APk rk+l = rk - ck* AHpk

Pk+1 = rk+1 + Pk Pk Pk+l = rk+1 + Pk* Pk

End do

where

OCk < Tk, rk > / < Pk,Apk >

k --< rk+lrk+l > / < rk, rk >

The resulting orthogonalities are:

< k,ri>=O k

"Pk,APi >  0 # k

A

.S.i"
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The complex scalar On is chosen to force the biconjugacy I

condit ion

< Pn+l, Apn > = < P n + l, Alpn > =0 (2.21).

Fletcher has shown that these relations lead to the

orthogonalit-es listed in Table 2.3. The initial

biresidual, ro , may be chosen in various manners. Flet'zher

uses .

r o = Ar o  (2.22),

while Jacobs [16) sets the initial biresidual to the complex

conjugate of the initial residual, ro. This algorithm will

be used henceforth. The matrix A need not be Hermitian, but

if it is, the algorithm reduces to the conjugate gradient

algorithm. If the matrix is complex symmetric, thtn ri and

Pi are complex conjugates of ri and Pi, respectively. Only

one matrix-vector multiplication (MATVEC) operation per %-

iteration is then necessary. The algorithm has a potential ."

flaw if < Fi,ri > = 0, which could occur even though I lil I .

# 0 and IIrilI # 0. This causes the algorithm to stagnate.

This rarely occurs in any of the practical problems that

have been studied. The biconjugate gradient and conjugate

gradient algorithms have a common origin, which can be seen

by using a set of N linearly independent

1

...........- -... -." "- i-
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complex vectors, {p}. The expansion given by

N-I
x - xo = Ixi Pi (2.23)

i=O

allows the initial residual tc be written as

N-I
ro = cxi Api (2.24).

i=O

Let another set {z}, of N linearly independent complex

vectors also span complex N-space, CN. Forming the inner

products

N-I
< zj,ro > = (Xi < zj,Api > (2.25),

i=O

and rewriting these in matrix notation gives

Z =

Zmn= < zm,Apn >

fm = < zm,ro > (2.26).

This matrix is analogous to the method of moments [2]

matrices, although the later are finite-dimension

approximations to infinite-dimensional Hilbert space. In

both cases, a weighted residual is made orthogonal to

another space. If this space is complete, the only choice

for the residual is zero. Equation (2.26) does not

initially appear to be of much help in obtaining the

solution to a N-dimensional system, since it is also N-

* . . . . . .. . . . . . . v **-
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dimensional. But if (2.26) can be forced to have a special

form, e.g. diagonal, tri-diagonal, or triangular, then the

{(X} may be easily solved for. If by means of orthogonal

vectors this matrix can be forced to have a dia-onal form,

then the coefficients are given by

< z i , r 0 >
ai =  p (2.27).

< z i , APi >

Replacing {z} by {p} gives the original conjugate gradient

method, by {Ap} gives CGNR, and by { } gives BCG. Since the

residual at the nth iteration in BCG has been made

orthogonal to a n-dimensional Krylov subspace spanned by

{ro,AHro, (AH) 2 ro, .. .... (AH)n-lro), the algorithm has the

finite step termination property, and the roots of the

residual polynomial are the eigenvalues of the matrix.

BCG is equivalent to the non-symmetric Lanczos algorithm,

just as conjugate gradient is equivalent to the symmetric

Lanczos algorithm [17) The later equivalence may be seen

by letting

RK = [ r0 , r... 1  (2.28),

and

PK= [ P0 , P , " PK- 1  ] (2.29);

then

RK= PK BE (2.30),
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where

1 -P0

1 -P31
BK= 1 (2.31),

-OK-2

1

which is obtained from

r. = pn - Pn-1 Pn-1 (2.32).

Letting

AK = diagonal [ I 1r01 I, 1r,11 , . 1. . I IrK-1  ] (2.33),

and then forming

H HH H H
AK RH A RK AK = AH BK PK A PK BK AK (2.34),

gives the matrix PKH A PK which is diagonal by the conjugacy

of { }. Thus, both sides of (2.34) are symmetric tri-

diagonal matrices. Since the residuals are orthogonal in

the conjugate gradient algorithm, then

AK RH RK A1 = 1K (2.35).

Thus (2.34) represents a unitary transformation of A to a

symmetric tri-diagonal form where the elements are given by

i t ~ i -- 1 i 2 2 < P i - 2 ' A P :.- 2 < P -- i ' A P -i >

tii 2  + 2 (2.36),
,I Iri... l 12 I Ir i_.. l 12

'iI
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and

< pi-, pi-i >
ti, i+1 (2.37).

I ri_1 I I Iril I

Equating these elements with those from the Lanczos

algorithm [4,17] gives the formulas for (a and f in the %

conjugate gradient algorithm.

In a similar fashion for BCG, let

RK = [ r0, FI, .'" rK-I ]  (2.38),

PK = [ D0 1, .. _ ] (2.39),

[ 1/2 -1/2

AK = diagonal [< o,ro >1, < r 1 ,r >/,

< rK- rK_1  > 1/2 (2.40),

RK = PK BK (2.41),

hK = K* (2.42),

and

RK = PK B1 (2.43).

From the biorthogonality of residuals and biresiduals,

AK 1 RK RK A- = IK (2 .44),

and from the biconjugacy condition,

PK A PK = diagonal [ < 0 ,Ap0 >, < f1 ,Ap > ...

< PK-1 iPKl > ] (2.45).

'a

a'

'.

• .'.'" " .' "'.2'.2'.bZ-'2-'-'<-v<'. -.<. ."%"v-'% '-",- . " " <', '<'.' ;. ;-' .2%X." -" "" "" ".'. "' "-.'- <""" -" -" '" -" "-"
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Thus,

K  A R, nK 1  A-' A P, BK A-1 T (2.46),

where T is a symmetric tri-diagonal matrix, after applying

the similarity transformation of (2.36) to A. Equating

elements of T with the elements of the tri-diagonal matrix

resulting from the non-symmetric Lanczos algorithm [4] gives

the formulas for a and 0 in Table 2.2. As with conjugate

gradient and CGNR, BCG on a machine with finite precision

arithmetic will experience gradual loss of the

orthogonalities characteristic of the method. Unlike

conjugate gradient based algorithms, which are reducing the

error norm at each iteration, the effects of the round-off

error may be more pronounced with BCG.

2.4 Chebyshev Iteration Theory

The Chebyshev iteration with dynamic estimation of

parameters was developed by Manteuffel [18] and implemented

in a software package (CHEBYCODE) by Ashby [19]. In this

method, the eigenvalues of a square real matrix, A, of

order N, must lie in the right half of the complex plane.

For a complex matrix A of order N, the partitioned

equivalent real system of order 2N,

[ Re(A) -Im(A)) 1 Re(x) 1 [ Re(b) 1

Im(A) Re(A) Im(x) = Im(b) (2.47),

A N.%'A
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is formed, either with an explicit or implicit A, and

without any additional memory requirements. The e-genvalues

of this equivalent real system are the eigenvalues of A or

AH [4,20]. Thus the eigenvalues appear in complex conjugate

pairs or as repeated real values. The Chebyshev iteration

algorithm is shown in Table 2.4. The residual polynomials

are the scaled and translated Chebyshev polynomial

Rn(%) = (2.48),

where the nth order Chebyshev polynomial is

Tn(z) = cosh (n cosh-(z)) (2.49).

This polynomial has zeros at

z = ± cos k = 1,3,5,7,..n (2.50).

Since this method does not attempt to place the zeros of the

residual polynomial at the eigenvalues of the matrix, it is

a true iterative method, without a finite step termination

property. Manteuffel showed that for each point in the

complex X plane, given the two parameters d and c, the

scaled and translated Chebyshev polynomials exhibit an

- asymptotic behavior, and thus an asymptotic convergence



23

TABLE 2.4 
'p

THE CHEBYCHEF ITERATIVE ALGORITHM

ro = b - Ax o  

r

Dx0 = (l/d) r o

xl = Xo + Dx 0

For k 1,2,3... until convergence do

rk= b - Axk

-- =2 rk + c DXk-I

Xk+ 1 =X k + Dxk  

"

End do 1 
C1

11%

C CI

%I-i

.1*

.4,,
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factor is given by

r(%, = lim R I) I =  + 2  _C2)1/2

n)oo d + (d 2  -c2)1/ 2

(2.51).
p

The rate of convergence is governed by the eigenvector

decomposition of the initial residual and the convergence

factor evaluated at each of the eigenvalues of the

equivalent real system. As the number of iterations becomes

large, the asymptotic convergence factor gives the reduction

of the appropriate eigenvector obtained in one iteration of

the algorithm. Figure 2.2 shows the asymptotic convergence

factor for the choice of d equal to two and c equal to one.

Each of the curves representing a constant value of the

convergence factor is an ellipse with foci at d-c, d+c.

The ellipse passing through the origin always has a

convergence factor of 1. Thus, if the matrix has all of its

eigenvalues within this ellipse, the algorithm is guaranteed

to converge. The CHEBYCODE implementation of the Chebyshev

iteration also finds the four extremal eigenv-lues of the

matrix, and uses this information to modify the parameters d

and c to obtain the smallest asymptotic convergence factor

at those extremal eigenvalues. Note that this factor is the

worst bound, since in Figure 2.2, zeros of the residual

polynomial are found on the real axis segment (1,3).

F v ? w : ;:- # , :, ? : : "'., --,.,,.S_,.
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2.5 Comparisons and Summary

The three algorithms presented are but three of many

possible algorithms based on a residual polynomial and an

expanding Krylov subspace. The algorithms differ in the

initial residual and the iteration matrix from which the

Krylov subspace is obtained. These differences are

highlighted in Table 2.5. The motivation for choosing

different iterative methods stems from the fact that simple

examples can be constructed in which each of the three

iterative methods will show superiority over the other two

in some sense.

al.

41I
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TABLE 2.5

COMPARISION OF THE THREE ITERATIVE METHODS

CGNR BCG CHEBYCODE

Initial residual ro  ro  ro of ERS*

Iteration matrix AHA A A of ERS

Number of Matrix-
vector operations
per iteration 2 2 1

Quantity
minimized I rnl I None Maximum of the

convergence
factor on the

spectrum of ERS

Theoretical finite
termination Yes Yes No

* quivalent Zeal aystem

%
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3. THE TREATMENT OF MULTIPLE EXCITATIONS

BY ITERATIVE METHODS

3.1 Introduction

When solving the same mat.cix equation for multiple

excitations, the efficiency of Gaussian elimination with

partial pivoting has been considered better than any

iterative method [4]. The decomposition of a matrix into

lower-upper (LU) triangular form has the advantage that the

factorization of the matrix need only be done once and then

any number of excitations can be treated by one forward-

elimination operation and one back-substitution operation for

each excitation. The factorization takes N3 /3 complex

floating point operations (flops) and the back-substitution

and forward-elimination each require N 2 /2 flops. Thus the

required work for M excitations is approximately N3 /3 + M(N 2 )

flops. Also, the excitations can be generated one at a time

and additional storage requirements are not necessary.

The main concern of this chapter is the solution of

systems which, due to symmetries of formulation, have

considerable redundancy and are sparse in the sense that all

the elements of the matrix need not be stored, e.g. Toeplitz

or block-Toeplitz matrices or slightly perturbed versions of

these matrices. For these types of systems, the use of

iterative methods results in savings in storage requirements

and hence ability to treat larger problems. However,

k'
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iterative methods have the drawback of not being able to

treat multiple excitations with as much ease as LU

decomposition. To date, no effective iterative algorithm for

the treatment of multiple excitations has been developed.

This chapter presents extensions to the conjugate

gradient and biconjugate gradient methods for simultaneously

treating multiple right-hand sides. It will be demonstrated

that these resuit in significant time savings as compared to

treating each excitation individually. It should be noted at

this point that scattering problems such as a periodic screen

where the equivalent matrix is a function of the incidence

angle are not amenable to treatment by the algorithm

presented. Attempts to produce efficient algorithms for

these problems have usually centered around using a function

of the solutions from previous excitations to generate the

initial guess for the next excitation's solution. Data

presented later in this chapter will show that even with a

matrix which is not a function of the excitation, an initial

guess for the solution can reduce the norm of the initial

residual substantially, but usually at the same time, slow

the convergence rate.

The iterative methods of Chapter Two generate sequences

of vectors from a Krylov space which will span the solution

space. In practice, the precision of the computing machinery

is a limiting factor and the sequence loses orthogonality due

to the propagation of round-off error. This phenomenon is

dependent on the machine used, the condition number of the
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matrix, and the excitation. The extent to which iterative

methods can be used to generate orthogonal sequences of

vectors and thus treat the multiple excitation problem is

examined in this chapter. The applications of interest are

the electromagnetic scattering problems, for which hundreds

of excitation angles are often required.

The major portion of the computation required by

iterative methods is the operation of a matrix or its

equivalent upon a vector (MATVEC). For problems allowing a

Fourier transform approach (i.e., systems that are slightly

perturbed Toeplitz or circulant), the number of floating

point operations per MATVEC can be as low as N (log N), where 4-

the logarithm is of base two and N is the order of the

equivalent matrix. For N greater than thirty-two, even this

formulation has the MATVEC operation dominating the execution

time. The primary motivation for treating multiple

excitations simultaneously is to reduce the overall number of

MATVECs. This can be accomplished if the additional

excitations can be treated using the vectors generated by the

MATVECs in each iteration.

The two methods used are the conjugate gradient method

applied to the normal equations (CGNR) and the complex

biconjugate gradient method (BCG). In both algorithms, the

systems of matrix equations are solved by making the

residuals of every system orthogonal to an expanding sequence

of vectors. The additional work at each iteration in the

multiple excitation algorithm includes the computation of the

A

%h
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required coefficient for each solution, and the updating of I

the residuals and solutions. The vectors are generated by

iterating on a composite system, until either that system is

solved (usually with a smaller error tolerance than required

for the individual systems) or until the direction vectors

significantly lose orthogonality. The composite system is

obtained by superimposing all the excitations of interest,

thus ensuring every eigenvector of the iteration matrix

needed for any solution is present [21]. The algorithm then

restarts by using the solutions obtained up to this point as

the next initial guesses, and by iterating directly on the

system with the worst error until it is solved to the desired

accuracy. The same procedure is repeated after every

restart. For the conjugate gradient based method (MCGNR),

the direction vectors generated afttr ..z ttart are again,

in theory, mutually orthogonal. They lose orthogonality with

the previous set of direction vectors one by one in a

predictable manner. Similar sets of orthogonalities are

shown for the biconjugate gradient based algorithm (MBCG).

The restart subroutine also recomputes the residual error

norm of all systems, outputting solutions which meet the

accuracy criterion, and removing those systems from further

processing.

he~
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3.2 MCGNR Theory

In theory, allowing CGNR to take the full N iterations on

a system will generate a set of direction vectors from a

Krylov subspace which are mutually orthogonal and span CN.

Thus, representing the mth solution at the nth iteration as

Xn in Pi (3. 1),
i=0

gives the mth residual at the nth iteration as 5

(n-)
rn = in Api (3.2).

i=0

Forcing this residual to be orthogonal to the set of

direction vectors, {Ap}, generated thus far would normally

involve finding n coefficients in the set {7(inm)). But, the

orthogonality of {Ap} implies the coefficients can be

computed individua.ly. The coefficients are

< APi, b
=1i - i = 0, 1, 2, n-1 (3.3),

which are not dependent upon the value of n. Thus, only one

coefficient, n-i (), need be calculated at the nth

I,

,1q

J~ f ~ ~ 
5
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iteration. Furthermore, (3.2) can be written as

r( = rn-M1 - I Apn-1  (3.4),

giving

Cm)
<m) APn-11 rn)1 >=n 2 (3.5).I IAPn-..1II

Thus, CGNR can treat multiple right hand sides by including

in each iteration the computation of Tn- 1 (m) (note the

computation of I lApn-ii 12 is already done for n- ) and

updating the unknowns xn(m) and the residuals rn (m) The

complete algorithm is given in Table 3.1.

CGNR will terminate before N iterations if the excitation

is orthogonal to one or more eigenvectors of AAH. This

situation poses a problem for the algorithm, as was shown by

Peterson [21], when using the direction vectors generated by

an excitation which had even symmetries. The direction

vectors also had even symmetry and thus could not span the

entire solution space for excitations containing an odd

symmetry portion. This motivates the use of the composite

system as the initial system for generating the direction

vectors. The composite system is obtained by summing all the

excitations of interest, thus ensuring in a statistical sense

that the coefficient of every eigen%.ector of the iteration

matrix needed for any solution is non-zero. The algorithm

then restarts by using the solutions obtained up to this

or r r r r I

. 4 i. . M L~i*,* *~ ., %~'4 %. ' ~4: :4 'i' :'4' ~ ~ A
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TABLE 3.1

CGNR BASED ALGORITHM FOR MULTIPLE EXCITATIONS (MCGNR)

ho(m) = AHro (m) = AH ( b mW - Axo (in)

p0 = ho of iterated system

For k =0,1,2......r.zil convergence do

Iterated system

Xk+1 = Xk + cXk Pk

rk+1 =rk - czk Apk

hk+1 = A11rk+l

pk+l = hk+1 + P~k Pk

SNon-iterated systems

xk+. (in (m + r~ki) Pk

rk+1~n W rk (m) - lk (m) Apk

End do

where

Ik Ihhl 12 / I IAPkI 12

PK = I Ilhk+11 12 / I I h 1 12

Ilk Wm. < Apk, rk (m) > / I Ap0~12

At the restart compute

r Wn = b -A xi)

for all systems and repeat the above routine

%'

Ic



35

point as the next initial guesses, and by iterating directly

on the system with the worst error until it is solved to the

desired accuracy. The same procedure is used after every

restart. The use of the system with the worst error is

motivated by the fact that the direction vectors up to this

point in the procedure have not spanned that solution space

well.

Before the first restart, the orthogonalities present in

the CGNR algorithm are given in Table 2.2. The

orthogonalities also hold between all vectors generated after

the restart. There exist orthogonalities between the sets of

vectors before and after the restart. Let the vectors before

the restart be denoted as hi (old), ri (old), pi (old) and the

vectors after the restart as h'j(new), r'j(new), pt(new) The

superscript emphasizes that the system number may change, and

the prime denotes vectors that are generated after the

restart. Recalling that the residual polynomial for CGNR is

=j
R j(AAH) =, j, (AA ;)nl(.)

n=0

then one may write

(new) H , (new)
h =i Cnj (AHA)n h0  (3.7).

n=O

%.A
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Thus, the first othogonality is

,Cnew) (old) h,(new) (old)

< hj ,h i  > = < ho , Cnj* (AHA)n h i  > (3.8).

n=0

The initial residual after the restart, r' (new), equals

rm(old), the prior residual available when the algorithm was

stopped at the mth iteration to do the restart. Equation

(3.8) then becomes

(new) (old)SCnj* < r. ,A(AHA) n h i  > (3.9).

n=0

The relationships obtained from Table 2.2,

hi = Pi - Pi-I Pi-I (3.10),

AHAPi = 1 ( hi _ hi 1 ) (3. 1i),

can be rewritten as

hi = f( pi_1,p 1  ) (3.12),

AH APi = g( hi, hi+1  (3.13).

denoting that hi is a linear combination of Pi-1, pi and

AHApi is a linear combination of hi, hi+l. Working on the

*. powers of the iteration matrix, gives

(AHA)n hi = (AHA)n f( Pi-1'Pi )

= (A HA) n- 1 g( hi~,h i ,hi+ 1 )

= (AH)n- 1  f( Pi-2,Pi-l,PiPi+ ) (3.14).

kVJ
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Continuing this process inductively gives

(AHA)n hi = f( pi-n-, ' . , ) (3.15),

so that Equation (3.8) becomes

,(new) (old) (new)
< hi ,h i  > cnj* f( < r m  ,Apin_ 1 >,

n=0

• < r, ,APi+n > )(3.16).(new)

Realizing that Equations (3.2) and (3.5) guarantee that

(new) (old)
< rm Ap1  > = 0 i < m (3.17),

then it follows that

,(new) (old)
<h ,h 1  = 0 i+j < m (3.18).

Equation (3.18) is the first of the set of observed

orthogonalities .- a

The second set of orthogonalities involves the direction

vectors, {Ap}, before and after the restart. Since the new

direction vector can be written as

.(new) 1 - Rj+1 (AAH) ] (new)
Apj -H ro

j+l

(AHi (new)

-- dnj (H) rm (3.19),
n=O

' %

-L-
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*I.

the inner product of the two sets of direction vectors is

j+l

(new) (old) (new) (oid)<Apj ,APi 1  n0dj < rm  '(AAH)l Api

n0O

(3.20).

Recognizing that the first term of this summation is zero for

i less than m and using Equation (3.11) after changing the

summation index, gives

,(new) (old)

< Apj ,Api >

J (new) (old)
k+l {< rm ,A (AA,) k h i  >

(new) (old)

< r m  ,A (AAH)k h+1 ( > (3.21).

This expression is of the same form as Equation (3.9),

leading to the result

(new) (old) 5
< Ap ,Ap >= 0 i+j < m-1 (3.22).

,

The third and fourth sets of orthogonalities are proved in
a

a similar manner. They are:

,(new) (old)
" ri ,Api > i+j < m (3.23),

(new) (old) 5
< Apj ,r i  = 0 i+j < m (3.24). ,,5

These orthogonalities are illustrated in Figure 3.1, for the

case of restarting at the fifth iteration. The direction

vectors in the set after the restart lose orthogonality with

Ile5
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Ap Ap'

0 x xx x x

1 x x xx x

r 2 x x xx x
3 x X x X X . . .

4 XX X X

5 XXX Xx

0 x x X1XXI

1 x x X X - x - - - -

r2 XXxi x x

3 X XI xx x

4 X I x xx x

5 x x x xx~

h h'

=-xI xxx x x x xx 0
VX xxxF x xx x 1

0 -x X1xxx x x 2

1 x Lxx x --------------------------------- 3
Ap 2xx x x 4

* 3 x x5

x4 x xO

O x x x x1 1xxxX1
1 x x Ix x x x x 2

Ap' 2 x x Ix Ix I- x 3
3 x x xx 4

Ap Ap'

Figure 3.1 Orthogonalities between vectors in MCGNR.
x denotes orthogonality. The restart occurred
after the fifth iteration.
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the set generated befrre the restart in a predictable manner

according to (3.22). Figure 3.2 shows the orthogonalities

detected with multiple restarts. It is interesting to note

that the orthogonalities between the sets of vectors before

the first restart at the fifth iteration and after arE '

maintained even though another restart occurs two iterations

later on another system.

3.3 MBCG Theory

From Table 2.3, two of the orthogonalities in the BCG

algorithm are

< rj,r k > = 0 j * k (3.25),

< pj,Apk > = < pj,AHpk > 0 j k (3.26).

As long as the {r} maintain linear independence, the method

has a finite termination property. It is easy to see that if

rk is linearly dependent on the previously generated {rl,

then < k,rk > is zero and thus ck is zero and the algorithm

stagnates. This has rarely occurred in any of the

electromagnetic scattering problems studied.

Thus, barring breakdown, N iterations of the BCG

algorithm generates a set of direction vectors from a Krylov

subspace which span CN. Representing the mth solution at the

.5
, @.
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U

Ap Ap' An''

, 0 1 2 3 4 0 i 2,
, 0 X x X X X

1 x x x x x

r 2 x x x x x

3 x x x x x

4 x x x x x
5 XX X X X

0 x x x x x x x-r 0 X X X X X XX. v
r' 1 x x x x x x

2 x x x x x --

0 x x x x x

r' 1 x x x x
2 x I x x

3 t x x x

h h' h''
1 2 3 4 5 0 1 2 0 1 2 3

x x x x x x xx x 0 '

h

1 x x x x x 3

Ap 2 x x 4
3 x x x I 5

4 x x x xx x 3x x 0 h

A x x x x x x x h3 x x x xx x 0 2

4 x x x0
0p' x1 x x 1 h''/

2 x x x 2
0 1 2 3 4 010 1 2 x3

Ap Ap' Ap''

Figure 3.2 Orthogonalities between vectors in MCGNR. .N
x denotes orthogonality. The restarts occurred
after the fifth and seventh restarts. '"

'..
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n-th iteration as

n-i

=ni (3.27),
i=O

gives the mth residual at the nth iteratoon

n-i
r(M -b M) ( in (3.28).

i=0

Forcing this residual to be orthogonal to the previously

generated {p} would normally involve finding n coefficients

in the set {T1in(m)}. But, the orthogonality of < pj,Apk >

implies the coefficients can be computed individually. The

coefficients are

(M) < Pi,b >
= i = 0,1,2,...n-l (3.29 ,

< pi,Api >

which are not dependent upon the value of n. Thus, only

n-i(m) need be calculated at the nth iteration.

Furthermore, Equation (3.28) can be written as

(M) (M) _(M)
r. =rn- -- n-i APn- (3.30),

giving

i..

k'(M) < Pn-1 f rn-1. >]n-I = (3.31).

< Pn-1, APn-i >

4%
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Thus, BCG can treat multiple rigbt hand sides by includinq in

each iteration the computation of T n-i (m )  notr the

computation of < Pn-l,Apn-i > is already done for n- )

and updating the unknowns xn(m) and the residuals rn(m). The

complete algorithm is given in Table 3.2.

For the same reasons given in the previous section, the

composite system is used as the initial system for

generating the direction vectors. The composite system is

obtained by summing all the excitations of interest, thus

ensuring in a statistical sense that the coefficient of every

eigenvector of the iteration matrix needed for any solution

is non-zero. The algorithm then restarts by using the

solutions obtained up to this point as the next initial

guesses, and by iterating directly on the system with the

worst error until it is solved to the desired accuracy. The

Isame procedure is used after every restart. The use of the J

system with the worst error is motivated by the fact that the

direction vectors up to this point in the procedure have not

spanned that solution space well.

Before the first restart, the orthogonalities present in

the BCG method are given in Table 2.3. These orthogonalities

also hold between all vectors generated after the restart.

There exist orthogonalities between the sets of vectors

before and after the restart. Let the vectors before the

restart be denoted as rj(old), Ej(old), p,(old), j (old) and the " -

vectors after the restart as r' . (new), i (new) , p, j (new) ,

', (new) The superscript emphasizes that the system number

-u %'- %-. J. ° %*..* *°-* - *. ...-...- -- --V- ' .
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TABLE 3.2 -

BCG BASED ALGORHTEM FOR MULTIPLE EXCITATIONS (MBCG)

ro (m ( b (m) AX° (m)

Po = ro of iterated system

po = ro = ro* of iterated system

For k = 0,1,2,...until convergence do

• **Iterated system *

Xk+1 = Xk + aXk Pk

rk+1 =rk - Ctk Apk

rk+l =rk - ak* AH~k

Pk+l = rk+1 + Pk Pk

Pk+2. = rEk+1 + Pk* k

• *Non-iterated systems *

Xk+1(m) = Xk(m) + Ilk(m) Pk

rk+1 (m) = rk((m) - (M) Apk

End do

where

*k = < Ek, rk > / < pk, Apk >

OK - < k+1,rk+1 > / < rk, rk >

Ilk( m ) < Pk,rk(m ) > / < pk, APk >

At the restart compute

r(m) = b -A x(M)

for all systems and repeat the above routine

-- " ". %. % " A % v% ' %. '. &V'AP . YY -' ' 'PJ g- * d%
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may change, and the prime denotes vectors generated after the

restart. V

Recalling that the residual polynomial for BCG is

RA(A) k  (3.32),
k=0

then one may write

(new) k (new) 1 -
rCki Ar (3.33),

using the fact that the initial residual after the restart,

rbo(new), equals rm(new), the prior residual available when

the algorithm was stopped at the mth iteration to do the

restart. The first observed orthogonality is

(old) ,(new)

< Pj ,ri >

(old) k (new)
- Ck i < Pi A rm >

k=0

(old) (new) V
= Cki < (A)k pj ,rm > (3.34).

k=O

The relationships obtained from Table 2.3

= 1  "- Pj-1 I (3.35),

AHpj = a, [ r - (3.36),

p

U JL~A!~AI~iL .&~ZAAA.A2Ar~kfl&~ .
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can be rewritten as

rj f( p -11 ) (3.37),

AHp j = g( rj, rj+1  ) (3.38),

denoting that Ej is a linear combination of and ij, and

that AHfj is a linear combination of rj and Fj+l. Working on

the powers of AH gives

(AH )k -j= (A H)kl A H

= (AH)k - 1  g( rj,rj+ )

= (AH)k- 1  f( Pj-l'Pj'Pj+ ) (3.39).

Continuing this process inductively leads to

(AH)k p = f( p_, p ) (3.40),

so that Equation (3.34) becomes

(old) ,(new)
<Pj ,ri >

i (old) (new)
I Cki f( < Pj-k ,rm
k=O

(old) (new)P.. < > ) (3 .4 1) .

Realizing that the algorithm expressed in (3.27) through j

%.
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(3.31) guarantees

(old) (new)
"p ,rm = 0 j < m (3.42), l

then

(old) (new)
" pj ,r i  = 0 i+j < m (3.43),

p

which is the first of the set of orthogonalities that were

observed. Using this result and (3.37), the second set of

orthogonalities,
p

(old) ,(new)
< rj ,r i  > = 0 i+j < m (3.44),

follows immediately. Applying -

p

(new) ,(new) (new)
Pi ri + P_1 pi_ (3.45)

recursively leads to |

,(new) i, (new)

P = . rk (3.46),
k=0 i

so that using (3.44) gives

(old) ,(new)
< rj ,pi = 0 i+j < m (3.47).

The other observed sets of orthogonalities are obtained by

using (3.37) and (3.38), alonc with the sets just presented.

-A-"."-k
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They are: I

(old) ,(new)
< A .. ,r > = 0 i+j < m-i (3.48),

(old) ,(new)
< pj ,A pi = 0 i+j < m-I (3.49),

(old) ,(new)
< r ,A pi > 0 i+j < m-I (3.50),

H (old) (new)"A pj ,A pi > = 0 i+j < m-2 03.51).

The orthogonalities given by Equations (3.44) and (3.49) are

illustrated in Figure 3.3, for the case of restarting at the

fifth iteration. The vectors in the set after the restart

lose orthogonality with the set generated before the restart

in a predictable manner according to (3.44) and (3.49)

Figure 3.4 shows the orthogonalities detected with multiple

restarts. It is interesting to note that the orthogonalities

between the sets of vectors before the first restart at the

fifth iteration and after are maintained even though another

restart occurs two iterations later on another system. The

other sets of orthogonalities exhibit a similar behavior.

3.4 Results

The first problem used with these algorithms was the

transverse electric (TE) plane wave scattering from a

perfectly conducting hexagonal cylinder as illustrated in

Figure 3.5. The cylinder is infinite and invariant in the z

direction. The p-oblem was formulated by the method of

A-

%~~ I +" + " ,P-I- J q . -. -l -l- I + , . -I I , + " + " ' - " " " + " " "
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Figure 3.3 Orthogonalities between vectors in ?4BCG.
x denotes orthogonality. The restart occurred
after the fifth iteration.
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Figure 3.4 Orthogonalities between vectors in MBCG.
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after the fifth and seventh restarts. S
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moments on the electric field integral equation using

seventy-eight triangular basis and seventy-eight pulse

testing functions [22]. Since the problem has six fold

symmetry, incident angles of zero, five, ten, fifteen, twenty

and twenty-five degrees were used.

Initially, rather than use the composite system to

generate the first set of direction vectors, the system

representii-; the fifteen degree incidence was used as the

initial system in the conjugate gradient based algorithm

(MCGNR). It was followed by the zero, five, ten, twenty, and

twenty-five degree incidence systems, in that order. Table

3.3 shows the residual norm for each system at the restarts,

using Equation (3.5) for n-i (m ) . Table 3.4 shows the same

information, but with ln-i(m) calculated by Equation (3.2).

Since the direction vectors lose orthogonality after the

first restart, the assumption necessary for Equation (3.2) no

longer holds. Thus, at the third restart, the residual norm

is worse than at the second restart, indicating that Equation

(3.5) should be used. The number of iterations for each

system is approximately twenty-five, the number typical when

treating each excitation individually. Comparing the number

of iterations with those of Table 3.3 shows that after each

restart, a fewer number of additional iterations are needed

to obtain a solution for the iterated system. In spite of

the reduction of total iterations from 150 to 100, the run

time on3.y decreased from 5.78 CP seconds to 4.26 CP seconds

on the CDC Cyber 175. This deviates slightly from a

Vro'
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TABLE 3.3

TE SCATTERING FROM A HEXAGONAL CONDUCTING CYLINDER. BCG
BASED ALGORITHM, AT EACH OF THE RESTARTS. LISTED ARE THE
NUMBER OF ITERATIONS PERFORMED BEFORE RESTARTING, THE
CUMULATIVE NUMBER OF ITERATIONS, THE SYSTEM WHICH THE
ALGORITHM WAS USING TO GENERATE THE DIRECTION VECTORS
(ITERATED SYSTEM), THE SYSTEMS WITH THE BEST AND WORST
RESIDUAL NORMS, AND THE RESIDUAL NORMS OF THESE THREE
SYSTEMS. THE CDC CYBER 175 USED 4.26 CP SECONDS.

restart 1 restart 2 restart

Iterations 27 26 18

Total Iterations 27 53 71

Iterated System 15 deg. 0 deg. 5 deg.

Residual Norm 7.25E-5 7.27E-5 9.41E-5

Worst System 0 deg. 25 deg. 25 deg.

Residual Norm 0.462 0.171 0.0350

Best System 10 deg. 5 deg. 10 deg.

Residual Norm 0.203 0.0451 2.24E-3

restart 4 restart 5 restart 6

Iterations 11 10 8

Total Iterations 82 92 100

Iterated System 10 deg. 20 deg. 25 deg.

Residual Norm 5.57E-5 9.22E-5 7.82E-5

Worst System 25 deg. 25 de-.

Residual Norm 7.51E-3 7.38E-4

Best System 20 deg. 25 deg.

Residual Norm 1.66E-3 7.38E-4
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TABLE 3.4

TE SCA:TERING FROM A HEXAGO,:AL CONDUCTING CYLINDER. CGNR
BASED ALGORITHM, AT EACH OF THE RESTARTS. LISTED ARE THE
NUMBER OF ITERATIONS PERFORMED BEFORE RESTARTING, THE
CUMULATIVE NUMBER OF ITERATIONS, THE SYSTEM WHICH THE
ALGORITHM WAS USING Tj GENERATE THE DIRECTION VECTORS
(ITERATED SYSTEM), THE SYSTEMS WITH THE BEST AND WORST
RESIDUAL NORMS, AND THE RESIDUAL NORMS OF THESE THREE
SYSTEMS. THE CDC CYBER 175 USED 5.30 CP SECONDS.

restart 1 restart 2 restart 3

Iterations 27 26 20

Total Iterations 27 53 73

Iterated System 15 deg. 0 deg. 5 deg.

Residual Norm 7.25E-5 7.27E-5 6.98E-5

Worst System 0 deg. 25 deg. 10 deg.

Residual Norm 0.462 0.175 0.274

Best System 10 deg. 10 deg. 25 deg.

Residual Norm 0.203 0.0625 0.169

restart 4 restart 5 restart 6

Iterations 25 25 27

Total Iterations 98 123 150

iterated System 10 deg. 20 deg. 25 deg.

Residual Norm 8.75E-5 8.29E-5 7.14E-5

Worst System 20 deg. 25 deg.

Residual Norm 0.375 0.525

Best System 25 deg. 25 deg.

Residual Norm 0.329 0.525

-Z_
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proportional relationship, and is due to operations that are

done by the program which may be considered as overhead.

Figure 3.6 shows additional detail of the residual norm

of all systems at each iteration. Since the solutions vary

continuously as a function of the incidence angle, one sees

that the direction vectors from the fifteen degree system

reduced the residual norm at the first restart of the ten and

twenty degree systems more than the other system. This

phenomena is also present at the other restarts. The shape

of the curves before the first restart at the twenty-seventh

iteration agrees with that reported by Peterson [21].

The same problem was solved using the BCG based

algorithm, (MBCG). The values of the residual norms at each p

restart are shown in Table 3.5. Although the decrease in the

number of additional iterations is not monotonic as it was

for the CGNR based algorithm, there is a substantial

decrease. The Cyber 175 took 3.91 CP seconds to solve this /

problem, a very slight edge over the CGNR based algorithm

times discussed above. On average, BCG would take

approximately twenty-one iterations to solve each system

individually, compared with twenty-five iterations for CGNR.

Although this matrix is not ill-conditioned, the difference

is attributable to BCG and CGNR generating from different

Krylov subspaces.

The second problem used was the TE plane wave scattering

from a seven wavelength wide flat strip as illustrated in

Figure 3.7. The strip is infinite and invariant in the z

j . % L- %S*N%. . . ... % .4 . 4-. ..-. 4 % ..W 
" '
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Figure 3.6 Residual norms of all systems vs. iteration

number for the hexagonal cylinder problem.
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TABLE 3.5

TE SCATTERING FROM A HEXAGONAL CONDUCTING CYLINDER. BCG
BASED ALGORITHM, AT EACH OF THE RESTARTS. LISTED ARE THE
NUMBER OF ITERATIONS PERFORMED BEFORE RESTARTING, THE
CUMULATIVE NUMBER OF ITERATIONS, THE SYSTEM WHICH THE
ALGORITHM WAS USING TO GENERATE THE DIRECTION VECTORS
(ITERATED SYSTEM), THE SYSTEMS WITH THE BEST AND WORST
RESIDUAL NORMS, AND THE RESIDUAL NORMS OF THESE THREE
SYSTEMS. THE CDC CYBER 175 USED 3.91 CP SECONDS.

.s%

restart-1 restart 2 restart 3 .

Iterations 21 21 20

Total Iterations 21 42 62

Iterated System 15 deg. 0 deg. 5 deg.

Residual Norm 5 22E-5 7.95E-5 1.65E-5

Worst System 0 deg. 25 deg. 25 deg.

Residual Norm 0.515 0.167 0.126

Best System 10 deg. 10 deg. 10 deg.

Residual Norm 0.245 5.23E-2 9.20E-3

~b
restart 4 restart 5 restart 6

Iterations 10 17 9 *

Total Iterations 72 89 98

Iterated System 10 deg. 20 deg. 25 deg.

Residual Norm 7.71E-5 2.08E-5 9.33E-5

Worst System 25 deg. 25 deg.

Residual Norm 2.84E-2 4.54E-3

Best System 20 deg. 25 deg.

Residual Norm 6.31E-3 4.54E-3

Pik,
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direction. The problem was formulated by the method of

moments on the electric field integral equation using

seventy-nine triangular basis and seventy-nine pulse testing

functions. Eleven incidence angles of one, five, ten,

twenty, thirty, forty, fifty sixty, seventy, eighty and

ninety degrees were treated. In this problem, the composite

system was used as the initial system. The desired residual

norm for all systems, except the composite- system, was

1.OE-4. Tables 3.6 and 3.7 show the convergence of the

MCGNR and MBCG algorithms, respectively, on a CDC Cyber 175

machine with sixty bit precision. In both cases th desired

residual norm for the composite system was 1.OE-12. On

average, CGNR for a single excitation required thirty-seven

iterations to solve this order seventy-nine system to a

residual norm of 1.OE-4. Thus, the CGNR based multiple

excitation algorithm required only twenty-four percent of the

number of iterations that would have been necessary had each

of the excitations been treated separately. For the same

problem, the BCG for a single excitation required twenty-six

iterations, on the average. The BCG based multiple

excitation algorithm required only nineteen percent of the

number of iterations that would have been necessary had each

of the excitations been treated separately. This translates

into a savings in overall computation time of approximately

fifty percent for both algorithms, based on execution times.

To test the effect of changing the desired residual norm %

for the composite system, these two algorithms were repeated '.
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TABLE 3.6

TE SCATTERING FROM A FLAT STRIP. DESIRED COMPOSITE SYSTEM
RESIDUAL NORM IS 1.0E-12. CGNR BASED ALGORITHM, AT EACH OF
THE RESTARTS. LISTED ARE THE NUMBER OF ITERATIONS PERFORMED
BEFORE RESTARTING, THE CUMULATIVE NUMBER OF ITERATIONS, THE
SYSTEM WHICH THE ALGORITHM WAS USING TO GENERATE THE
DIRECTION VECTORS (ITERATED SYSTEM), THE SYSTEMS WITH THE
BEST AND WORST RESIDUAL NORMS, AND THE RESIDUAL NORMS OF
THESE THREE SYSTEMS. THE CDC CYBER 175 USED 7.19 CP SECONDS.

restart restart 2 restart 3 restart 4

Iterations 69 9 10 8

Total Iterations 69 78 88 96

Iterated System composite 60 deg. 50 deg. 1 deg.

Residual Norm 2.2E-13 5.5E-5 6.2E-5 7.9E-5

Worst System 60 deg. 50 deg. 1 deg. 1 deg.

Residual Norm 3.OE-1 8.6E-3 3.0E-3 7.9E-5

Best System 10 deg. 30 deg. 80 deg. 30 deg.

Residual Norm 2.3E-2 4.1E-3 7.6E-4 4.0E-5
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TABLE 3.7

TE SCATTERING FROM A FLAT STRIP. DESIRED COMPOSITE SYSTEM
RESIDUAL NORM IS 1.OE-12. BCG BASED ALGORITHM, AT EACH OF
THE RESTARTS. LISTED ARE THE NUY3ER OF ITERATIONS PERFORMED
BEFORE RESTARTING, THE CUMULATIVE NUMBER OF ITERATIONS, THE
SYSTEM WHICH THE ALGORITHM WAS USING TO GENERATE THE
DIRECTION VECTORS (ITERATED SYSTEM), THE SYSTEMS WITH THE
BEST AND WORST RESIDUAL NORMS, AND THE RESIDUAL NORMS OF
THESE THREE SYSTEMS. THE CDC CYBER 175 USED 3.94 CP SECONDS.

restart 1 restart 2 restart 3

Iterations 49 4 2

Total Iterations 49 53 55

Iterated System composite 1 deg. 80 des.

Residual Norm 1.IE-13 6.4E-5 3.3E-5

Worst System 1 deg. 80 deg. 10 deg.

Residual Norm 5.6E-2 1.5E-3 7.9E-5

Best System 30 deg. 5 deg. 60 deg.

Residual Norm 2.7E-2 3.0E-4 1.6E-5

,i,
'?'
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on the same problem. For the MBCG algorithm, Tables 3.8 and

3.9 show the effect of changing the desired residual norm for

the composite system to 1.OE-7 and 1.OE-6, respectively.

Comparing the results of Tables 3.7, 3.8, and 3.9, the best

strategy is to solve the composite system to the lowest

possible residual norm consistent with the precision of the

computing machinery and generate the full set of vectors to

span CN . To estimate the orthogonality of the entire set of

vectors, at every iteration

< p.,ApO >
RORTHO = log 0 I , (3.52)

I 1pil I IAp0 1 I

was evaluated. This measure is easily computed. Also, it

has been shown [14] that if an iterative method based on a

three term recursion loses orthogonality between elements of

a set of vectors, this loss is fairly rapid. Figure 3.8

shows the values of Equation (3.52) for the first 48

iterations of the system used for Table 3.7. The

orthogonality of the vectors is still satisfactory, but is

rapidly decaying.

Allowing the MBCG algorithm to take the full seventy-nine

iterations on the composite system did not reduce the

residual norm of any of the non-iterated systems below

8.74E-3, although in theory, the residual norms should be

zero. This is due to the loss of ('rhogonality as shown in

Figure 3.9, where RORTHO of Equation (3.52) and the residual tl
2|
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norm of the composite system are shown. Since Figure 3.8 is

the left portion of Figure 3.9, it can be seen that in the

case of Table 3.7, the algorithm was stopped just as the

orthogonality was rapidly dEcaying. The loss of

orthogonality should come as no surprise since the vectors of

the next iteration are generated from the present iteration's

residual and biresidual vectors. The norm of both of these

vectors are rapidly approaching the limit of precision of the

computing machinery after the fortieth iteration.

To test the effect of changing the desired residual norm

of the composite system in the MCGNR algorithm, it was

repeated with a desired residual norm for the composite

system of 1.OE-8 (Table 3.10). As in the case of the MBCG

algorithm, a smaller desired residual norm for the composite

system results in fewer restarts, fewer total iterations, and

less computer time. Likewise, setting the desired residual

norm for the composite system to zero in an attempt to

generate a complete set of direction vectors would be futile.

In a manner similar to Equation (3.52),

< Ap i Ap0 >
RORTHO = log 0 I Ap I I AP0 I I53)

was evaluated at each iteration. It is shown in Figure 3.10

along with the residual norm of the composite system for the

example presented in Table 3.6.

I
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The relatively slow convergence of the residual norm

displayed in Figure 3.10 as compared to the convergence of a

single excitation residual norm indicates that the majority

of the eigenvectors have a non-zero coefficient in the

eigenvector expansion of the initial residual. Also, no

clustering of the eigenvalues of the matrix is evident. As

in the case of Figure 3.9, RORTHO remains small until the

composite system residual norm drops below approximately

1.OE-8.

To test machine dependence, the example of Ta-le 3.6 was

repeated on an AT&T 6300 personal computer using thirty-two

bit precision. Table 3.11 shows the convergence of the CGNR

based algorithm on this machine for the same desired residual

norms. Figure 3.11 shows RORTHO and the residual norm of the

composite system. As a comparison, the residual norm from

Figure 3.10 for the CDC Cyber 175 is also shown. The rapid

increase in RORTHO indicates with good accuracy the loss of

orthogonality of the direction vectors. This loss is evident

by the difference of the residual norms for the two computers

beginning at the sixty-third iteration. Comparison of RORTHO

from these figures confirms that the CDC Cyber 175 with sixty

bit words maintains better orthogonality than the AT&T 6300

PC with thirty-two bit words. The Cyber Icses the

orthogonality at approximately the same point in the
.5-

algorithm as the PC. However, the loss of orthogonality for

the Cyber is not significant. Up to the last iteration, the

N S -
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TABLE 3.11
CGNR BASED ALGORITHM, AT EACH OF THE RESTARTS. THE COMMENTS I
FOR TABLE 3.6 APPLY. THE MACHINE USED WAS THE AT&T 6300 PC.

1 restart 2 restart 3

Iterations 77 20 4

Total Iterations 77 97 101

Iterated System co- posite 9 3

Residual Norm 9.2E-13 9.OE-5 7.2E-5

Worst System 9 3 10

Residual Norm 1.5E-1 4.1Z-3 £.7E-4

Best System 4 6 5

Residual Norm 2.0E-2 2.0E-3 5.6E-5

resar 4 restart 5 -

Iterations 7 1
pl

Total Iterations 108 109

Iterated System 10 11

Residual Norm 8.1E-5 8.5E-5

Worst System ii 8

Residual Norm 1.5E-4 9.6E-5

Best System 6 11

Residual Norm 3.2E-5 8.5E-5

,°

~ - ~
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Figure 3.11 RORTHO and residual norm of the composite
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residual is updated recursively; then during the restart, the

residual is recomputed by

r n = - Ax n  (3.54).
p

For the Cyber, the iesidual norm from the recursive

residual and the direct recomputation differed by less than

1.OE-14, while these norms for the PC were 9.2E-13 for the

recursively updated residual and 6.8E-7 for the direct

recomputation.

In practice, one would not normally solve a single

excitation problem to such a small desired residual norm. As

the order of the system increases, the number of iterations

also increases. The probability of the residual norm

computed from the recursively updated residual being

inaccurate also increases. Using the residual computed from

Equation (3.54) would require an additional MATVEC operation,

increasing the total MATVEC operations to three per

iteration. A compromise proposed by Peterson [23] is to
p

recursively update the residuals, but then at regular

intervals, recompute the residual by Equation (3.54) . The

MCGNR algorithm was run for the example of Table 3.6 and

Figure 3.10 on the CDC Cyber 175, recomputing the residual

every tenth iteration by Equation (3.54). Figure 3.12 shows

RORTHO and the residual norm for the composite system. There

is no discernable difference between the residual norms of

Fiaures 3.10 and- 3.12, but the values of RORTHO differ

%
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system vs. iteration number, prior to thefrs
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The residuals were recomputed every tenth
iteration on the CDC Cyber 175.
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greatly. 'he recomputation of the residual introduces error

into the three term recursion generating the direction

vectors, causing RORTHO to increase substantially every

tenth iteration. On the other hand, the data indicates that

RORTHO must increase to more than 1.0E-4 before the residual

norm is affected.

The third example used was plane wave scattering from a

one wavelength square flat conducting plate, as shown in

Figure 3.13. The electric field for each excitation was

normalized to unit magnitude. The problem was again

formulated by the method of moments using subdomain roof-top

basis functions and razor testing functions [22]. By

systematically numbering these functions, the resulting order

180 matrix has much redundancy, due to the convolutional form

of the integral equation [21]. The matrix is block-Toeplitz

with Toeplitz blocks, and each of these blocks are also

block-Toeplitz with Toeplitz blocks In fact, the values of

all 32,400 elements are contained in the first and ninety-

first columns. By generating and storing only these two

columns, the matri:: fill time and memory requirements were

both reduced by a factor of ninety. With this method the

matrix fill time was seventy five seconds on the Apollo

DOMAIN 3000 computer.

The disadvantage of this approach is an additional

routine is necessary to generate the proper indexing for each

element of the matrix when it is required. One approach to

this routine would be the use of two integer matrices of

L . * - ~~
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order 180. Anothcr w;ould be to use four two-dimensional

FFTs, each operating on a 179 by 179 grid of points. Since

the matrix is block-Toeplitz with Toeplitz blocks, the rules

for indexing are relatively short. In spite of this, the

average time for a MATVEC operation increased from 3.8

seconds to 9.6 seconds. Eleven systems representing a wide

range of possible excitations of interest were solved to a

residual norm of 1.OE-4 to serve as a benchmark. The number

of iterations necessary and the parameters of each system is

shown in Table 3.12.

Each iteration took an average of 20.34 seconds for CGNR,

and 19.92 seconds for BCG. Since both methods require two

MATVECs per iteration, the MATVEC operation is over ninety

percent of the work per iteration.

The problem was then expanded to include ninety

excitations. The angle Owas incremented in five degree

steps from zero to forty-five degrees, and the angle e was
incremented in te:. degree steps from zero to eighty degrees.

Extrapolating the data from Table 3.12 gives estimates of

37.65 and 32.47 hours for GGNR and BCG to treat all ninety

excitations individually.

The multiple excitation algorithms with the parameters

shown in Table 3.13 were then used to solve this expanded

problem. The MBCG symmetric algorithm capitalizes on tne

fac a this particular oroble.m leads to a complex.

sycetric matrix, in which case BCG needs only one .AT.V-7 per

:teratl:' as was disc ssed in Chapter Tw-,. Fui eaci entry in

A-
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TABLE 3.12

EXCITATION PARAMETERS AND NUMBER OF ITERATI:.S REQUIRED FOR
CGNR AND BCG TO SOLVE EACH EXCITATION SINGLELY TO A RESIDUAL
NORM OF 1.OE-4.

Incident angle (degrees) Iterations

0 04CG'4 3

0 0 44 30

0 45 44 32

30 0 74 55

30 22.5 84 68

30 45 79 57

60 0 77 62

60 22.5 90 72

60 45 86 71

80 0 76 61

80 22.5 92 72

80 45 86 69
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Table 3.13, additional information is graphed in Figures 3.14

through 3.24. In each of these figures, the abscissa is the

restart number. The best and worst system residual norms are

plotted, along with the number of additional iterations

required to initiate that restart, and the number of systems

solved at that restart.

For the data of Figures 3.14 and 3.15, the desired

residual norm for the composite system is 1.OE-4 and

1.OE-6, respectively, the only difference in parameters

used. Setting the restart threshold on RORTHO to zero in

both cases ensures the algorithm will not restart due to the

detected loss of orthogonality between vectors. The major

difference in the two figures is the number cf itezations

required to reduce the composite system residual to a smaller

norm. Expending the additional sixty-five iterations on the

composite system in Figure 3.15 should, based on theory and

previous examples, save more than that in the total number of

iterations that follow. However, the savings was only

twenty-six iterations, not enough to offset the expenditure

of the sixty-five. Desired residual norms of less than

1.OE-6 were not tried in any of the runs on this problem

since the change from a desired residual norm for the

composite system from 1.OE-4 to 1.OE-6 did not result in

any savings, as it did in the previous examples. This can be

attributed to the fact that the computing machinery was near

the limits of precision. The additional iterations did

reduce the best and worst residual norm at subsequent
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restarts, but not substantially enough to make up for the

extra work.

The variable RORTHO as defined by (3.53) indicated tfat

orthogonality was rapidly deteriorating at about the

thirtieth iteration. Figure 3.16 shows the effects of

forcing the algorithm to restart when RORTHO was less than

-2.0. The algorithm restarted fifteen times after solving

the composite system before solving another system. In spite

of this, it was abie to reduce the best and worst system

residual norms at each restart and eventually solve all

systems in less time than the estimated time to solve all

systems individually. Comparing this with Figures 3.14 and

3.16 it appears that even though the orthogonality is

degraded, the residual norms of the non-iterated systems are

still reduced, and the algorithm is robust.

For the MBCG algorithm, Figures 3.17 and 3.18 differ in

the desired residual norm for the composite system. The

desired residual norm of 1.OE-6 in Figure 3.18 gives better

residual norms for the non-iterated systems initially, but

differs little from Figure 3.17. Since the limit on RORTHO

was 0.0 in both cases, the algorithm was not allowed to

restart in case of loss of orthogonality. By setting this

limit to -2.0 and allowing the algorithm to restart, as

shown in Figure 3.19, the algorithm took more than the

estimated time to solve all the systems individually. The

poor performance of this case and of MBCG when compared to

MCGNR stems from the basic difference between these two

- / p
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algorithms. MCGNR makes the residual of all systems

orthogonal to an expanding sequence of orthogonal vectors,

while MBCG makes the residual of all systems orthogonal to an

expanding sequence of linearly independent vectors. Thus the

residual norm of all systems will not show a monotonic

decrease in the MBCG algorithm as they do in the MCGNR

algorithm, where the residual norm is minimized at each

iteration. A closer examination of the envelope of residual

norms bounded by the worst and best residual norms in Figure

3.17 reveals that up to the four-eenth restart, the algorithm

is very effective. This suggests that if a residual norm of

5.OE-3 was adequate, solving a few sysLems to a smaller

residual norm of 1.OE-4 would result in 887 total

iterations, and less than 2900 MATVEC operations. The total

time required would then be approximately 9.5 hours.

Another comparison between these two methods is

highlighted in Figures 3.20 and 3.21, which show the restart

number at which each system was solved. The composite system

was solved first in all four cases. The systems are

identified by their excitation parameters, 0 and ¢ of Figure

3.13.

For the MCGNR algorithm, the systems with the worst

residual norm at the restart and hence the next iterated

system are identical for the first twelve restarts, in spite

of different desired residual norms for the composite system.

The iterated systems are widely dispersed in 0 and O , and

Md h~ft 1
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tend to solve non-iterated systems in the same row or column

of the grid, or ones which are close in the value of 0 and 4.

On the other hand, the worst residual norm system in the

MBCG algorithm is very sensitive to parameter values, as seen

in Figure 3.21. This algorithm is not very robust since, as

an example, the system corresponding to 0 and 0 of thirty and

forty degrees in the lcwtr diagram is adjacent tQ systems

that were previously iterated upon. This is attributable to

the MBCG algorithm only making the residual of this system

orthogonal to sequences of vectors which were only linearly

independent, and also to the fact that many iterations and

restarts occurred. The orthogonalities between vectors after

a large number of restarts have been lost, as discussed in

Section 3.3.

In spite of the MBCG algorithm not being as robust as the

MCGNR algorithm for this formulation of the problem, the

algorithm can capitalize on the resulting symmetry of the

matrix to eliminate one MATVEC operation per iteration. This

would also reduce the number of MATVECs shown in Table 3.12

by half, and give a commensurate speedup.

The symmetric MBCG algorithm was first attempted with the

same parameters as used for Figure 3.17. Comparing the

results in Figure 3.22 with those in Figure 3.17 can lead to

misleading conclusions since the system with the worst

residual norm at the third and subsequent restart was

different . in theoiy, the symmetric MBCG aigorLthm should

duplicate the results of the general algorithm, but the

. a-



92

0 -

EV
U)a-!

g-1

0

- -2 - Worst sys.
-.- Best sys.

U)
(D -3.

e.

-4, J.-

0 5 10 15 20
Restart number

200-
180

160 "M
140 "

c 120-
.0 100

60

40

20

0 5 10 1s 20
Restart number

0) 7 -

o 6 -
()

0 5 -
E ,

4-

(3 -

0 2-

E
M 0"

0 5 10 15 20
Restart number

Figure 3.22 MBCG symmetric algorithm residual norms,
additional iterations, and number of systems
solved vs. restart number. Desired error for
the composite system was 1.OE-4 and the
restart limit on RORTHO was 0.0.

!,2
I'; ,-_v,. ;. v ... "-'',-a." -'-,,"; "'-'.'.-'-"".''-. ' ''.-.'. "- "."".''.''."".''-"".""....'-'-'..'-'...'.,. ,.'-.'-."• "v.-'.- .-,.-.'.':'.-',v .'..',." -'.



I

93

round-off error was enough to cause a significant difference

beginning at the third restarz. This algorithm failed after

the nineteenth restart, when it took 180 iterations on one

system without solving it. The algorithm was forced to

restart when the number of iterations exceeded the order of

the system. Restarting on a different system led to the

stagnation problem discussed in Section 3.3. The residual

norm of this system stayed at 8.9E-3 for seventy iterations

before the algorithm was stopped. Recovery from this problem

can be obtained by changing the initial guess for the

solution, but this procedure was not used. The general MBCG

algorithm has also exhibited the same behavior, indicating

the problem is not specific to the symmetric MBCG algorithm.

The symmetric MBCG algorithm was run with a desired residual

norm of 1.OE-2 for all systems, including the composite

system, to validate the computer program. The data in Figure

3.23 show the desired behavior of a decrease in worst and

best system residual norms, a decrease in additional

iterations, and an increase in the number of systems solved

as the algorithm progresses.

The sensitivity of this algorithm to parameter variations

would seem to indicate that it has the potential for

performing well, but the proper choice of parameters is not

known a priori. With certain parameters a!r e

enhancements to the algorithm, significant time savings may

result, as the final MBCG example shows.

%"
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One enhancement discussed previously is to solve the

composite and all iterated systems to a smaller desired

residual norm, not just the composite system alone. Non-

iterated systems would be considered solved when their

residual norms were less than a less stringent limit.

The MBCG algorithm failed when using desired residual

norms of 1.OE-5 and 1.OE-4 for the iterated and non-

iterated systems, respectively. The thirteenth and

subsequent restarts were initiated when number of attempted

iterations exceeded the order of the system. No solutions

were obtained at these restarts.

Changing to the symmetric MBCG algorithm and moving these

limits on the desired residual norms to 5.OE-5 and 5.OE-4

gives the results of Figure 3.24. The total time required

was 9.38 hours, which compares well with other times shown in

Table 3.13.

One further enhancement to the MBCG algorithm is to

examine the residual norms of all the non-iterated systems at

every iteration. Since these norms do not exhibit a

monotonic behavior, the possibility exists that a system

satisfying the error criterion many iterations before a

restart may not do so at the restart. By checking the

residual norms at each iteration, systems that are solved are

removed from further processing until the next restart when

the solution is checked by means of Equation (3.54).

This enhancement was implemented in the symmetric MBCG

algorithm. Using the same parameters, the time required

S,2
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decreased to 9.00 hours. There was no difference in the I

worst and best system residual norms or the number of

additional iterations except that the seventeenth restart was

not needed. The significant difference occurs in the number

of systems solved at the twelfth restart and later. The

enhancement causes more systems to be solved earlier in the

algorithm, giving the time savings.

Finally, the plate size in the physical problem was

doubled to two wavelengths on a side to test the ability of

the MCGNR algorithm to handle a larger problem of order 760. p

The number of excitations was reduced to nine to avoid

running the Apollo DOMAIN 3000 computer for extended periods

of time. The excitations used were all combinations of e
equal to fifty, sixty, and seventy degrees and 0 equal to

twenty-five, thirty, and thirty-five degrees. Solving the

system in the center of this three by three excitation grid

required 103 iterations and 10.15 hours. Using these N

numbers as the average for all nine systems gives estimates

of 927 iterations and 91.35 hours to solve the systems
~-

individually.

The residual norms shown in Figure 3.25 emphasize a

phenomena seen to a lesser extent in the other examples

presented. The convergence rate of the composite system,

which is solved first, is more rapid than the convergence

rate of the systems after the restarts. This is due to

round-off errors exciting eigenvectors of the matrix that

were previously not significant in the eigenvector expansion

P
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of the initial residuals. In spite of this slowdown, each

system's initial residual norm was reduced at each of the

restarts. The algorithm gains efficiency when treating the

last few excitations. The statistics for this run were 761

total iterations in 79.05 hours for a 13.5 percent time

savings.

The addition of more excitations would produce better

efficiencies. For example, the MCGNR algorithm applied to

the one wavelength square plate problem previously discussed

was able to solve eleven widely spaced excitations in the

same number of iterations as required for ninety excitations

interspersed among the eleven.

Since none of the excitations for this problem involve

normal incidence, the non-symmetric eigenvectors are present

in all excitations. Thus, the use of a composite system may

not be necessary. To test this hypothesis, the MCGNR

algorithm used the system in t1 center of the excitation

grid as the initial system in lieu of a composite system.

The overall performance of the algorithm was 691 total

iterations in 69.67 hours for a 23.7 percent time savings.

Again, the convergence rate slowdown after the first restart

is evident in Figure 3.26.
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3.5 Summary

Based on the examples presented in this chapter, the

treatment of multiple excitations b5 iterative methods is

feasible and can lead to significant time savings. These

savings are not obtained without the drawback of increased

memory requirements to store the additional excitations,

residuals, and solutions. In cases where the matrix has

considerable redundancy or can be implemented by means of the

fast Fourier transform, the increased requirements are offset

by the decreased memory requirements for the storage of the

matrix. The efficiencies of these algorithms tend to

increase greatly as more excitations are added. Acain, the

available memory becomes a limiting factor.

The multiple excitation algorithm based on the conjugate

gradient method (MCGNR) is less sensitive to parameter values

than the biconjugate gradient based algorithm (MBCG). Fo:

small order systems on computing machinery with many bits

of precision, the MBCG algorithm performs better than the

MCGNR algorithm since the use of a composite system solved to

a very small residual norm is effective. However, on large

systems, the norm reducing property of the MCGNR algorithm

gives it a robust nature. The observed breakdowns of the

MBCG algorithm also indicate that the MCGNR algorithm is

better.

In both of the algorithms, RORTHO, the measure of the

orthogonality of a set of vectors which are in thecry

S ~ -' ~ 5 ~ S5 % S~~.0,
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orthogonal, indicates the onset of the loss of orthogonality

well. This indicator tended to be very sensitive. Using the

difference between the norms of the residuals updated

recursively and directly by Equation (3.54) would be a more

appropriate indicator, but the evaluation of (3.54) adds

to the time required. Using the directly computed residual

at set intervals in the iterative algorithm caused

orthogonality to be lost at a greater rate.

The treatment presented in this chapter was intended only

to validate the concept of treating multiple excitations with

iterative algorithms. Other enhancements to the approach may -

be possible. For example, the use of more than one composite

system or a different weighting on the excitations

comprising the composite system are ideas yet to be tested.
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4. PRECONDITIONED ITERATIVE METHODS

IN NUMERICAL ELECTROMAGNETICS

4.1 Introduction

The theoretical properties of 'he algorithms of chapter

two dictate that an increase in the rate of convergence may

be achieved by the use of preconditioning. The methods

based on a residual polynomial may converge more rapidly if
I,

the eigenvalue spectrum of the iteration matrix is contained

in a smaller region in the complex plane, or on a smaller

interval of the positive real axis, depending on the type of

iterative algorithm used. The convergence rate of these

algorithms is determined by the eigenvalues of the iteration

matrix and the eigenvector decomposition of the excitation.

All the algorithms allow rapid convergence if the excitation

is composed of only a few eigenvectors of the iteration

matrix. Preconditioning may be used to reduce the number of

iterations necessary to achieve a solution of desired

accuracy, by transforming the equation to an equivalent one

with eigenvalues in a more favorable location or in a

smaller cluster. However, this is no guarantee that a

solution of desired accuracy will be achieved in fewer

iterations or in less time. The preconditioning may

transform an excitation which was composed of few

eigenvectors of the original iteration matrix into an

excitation which is composed of many eigenvectors of the

. ' .- . , ',,g,, .r* % dl~ i lr n~mNnll| hn an . . . .. 4 . .. •
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preconditioned iteration matrix. To be effective, the 3

preconditioning must be fast, impose minimal additional

memory requirements, and should exploit any special

structure of the matrix, e.g. circulant, block-circulant,

Toeplitz, or block-Toeplitz.

This chapter first examines the numerical approach to

electromagnetic scattering problems. A brief groundwork in

the solution of these problems is laid, and various methods

and preconditioners used by others are put in perspective.

The preconditioners used in this work are introduced and the

stopping criterion for iterative algorithms is re-examined.

4.2 Formulation of Scattering Problems

It is of considerable interest to find the

electromagnetic fields scattered from an arbitrary three-

dimensional object (scatterer) in free space. An

understanding of the scattering for a particular object may

lead to methods reducing radar cross-section or providing

other desired results. The solution of the coupled linear

partial differential equations of Maxwell has been attempted

by standard finite-difference and finite-element methods

[24,25]. These methods have been successful, but are

limited by the fact that the boundary conditions are known

exactly on or in the scatterer and at an infinite distance

from the scatterer. Current research [26,27] involves

;, '. •. '- -' • ...- '- ,- :2- . '- . ', ;-- . -' . ,' .' , '- '- . , ., . - , . .% . % . '', A
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transforming the latter boundary condition onto a surface

close to the object to reduce the memory requirements.

The approach generally used to solve these problems is

to cast the problem into a Fredholm integral equation of the

first or second kind [28]. The appropriate boundary

condition at infinite distances (also referred to as the

radiation condition) is satisfied by a proper choice of

Green's function in the resulting surface or volume integral

equation. Symbolically, this can be written as

gS(r) = R(r) f(r) + f f(r') G(r,r') dD' (4.1),
D

where gs are the vector fields evaluated at position r, f

are the sources of these fields located at position r' , and

G is the tensor Green's function. The tensor R is a

function of the material conductivity, permittivity, and

permeability. For isotropic media, R becomes a scalar. The

domain of integration, D, is limited to the scatterer. The

next step in the solution procedure involves satisfying

boundary conditions on a linear combination of gS and gI,

the known incident fields. The fundamental unknowns to be

determined are the induced sources, f. The operator

equation then emerges as

T(f) = gI in D (4.2).
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h

At this point, the domain of the operator is infinite-

dimensional function space. To solve the problem with the

aid of computing machinery, the operator must be projected

onto a finite-dimensional complex vector space of order N,

CN. This is ge.ierally accomplished by the method of moments

(MoM) [2]. Several points about this projection should be

elaborated on at this point.

First, for N finite, the projection is not exact.

However, physically realizable g' seem to be approximated

well by a few of the eigenfunctions of the operator. Much

research [29,30] involves finding the minimum number of

basis and testing functions in the MoM to achieve an

accurate solution and hence reduce the order of the matrix

to be solved. This minimum is bounded by the number of

eigenfunctions of the operator deemed to be significant by

some criterion in the excitation. For certain separable

canonical shapes, it has been shown [13) that the

eigenvalues of the operator and eigenvalues of the resulting

scaled moment method matrix agree well when the MoM

formulation is accurate. The moment-matrix corresponding to

Equation (4.2) is

A x =b (4.3),



107

where the elements of A and b are given by

Amn = < wm,Lfn > (4.4),

bm = < wm,g > (4.5).

The f and w a2.e commonly referred to as basis and testing

functions, respectively. If the eigenvalue equation for the
I

continuous operator,

L e = e (4.6),

is discretized using the same basis and testing functions as %

used to solve Equation (4.2), the resulting matrix equation

is I

S-1 A u = u (4.7), .a

where the elements of A are given by (4.4) and the elements

of S are

St < > (4.8) .

Equation (4.7) involves the same eigenvalues {X) appearing

in Equation (4.6), and suggests that the eigenvalues of the

product matrix S-1 A should approximate the eigenvalue

spectrum of the original continuous operator. The accuracy

of this approximation depends on the ability of the chosen I

basis functions to approximate the operator's

eigenfunctions.

%I.*., % ~ *- ~
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When using subsectional basis and testing functions that

are non-zero only over a small portion of the domain and

that do not overlap, S becomes a scaled identity matrix.

This can also occur if the basis and testing functions are

orthogonal on the domain of the scatterer, e.g. a circular

conducting cylinder with eigenfunctions of the form ejno.

The eigenvalues of the operator Equation are known for only

a few canonical shapes, and thus the accuracy of the

formulation may be checked for these shapes. In addition,

observations relating the convergence rate of the conjugate

gradient method and the accuracy of the moment-method

formulation are possible [21,31).

Second, the multiplication of the MoM matrix and a

vector, i.e, as required within an iterative algorithm, may .-

be done by explicitly forming and storing each element of

the matrix or implicitly accomplished by use of the fast

Fourier transform (FFT) for geometries and discretizations

preserving discrete convolutional symmetries [21,32,33].

The FFT based approach reduces the memory requirements and

increases the speed of the algorithm. Since the FFT

uniquely maps one complex vector onto another vector, it can

be characterized by an equivalent square matrix.

The examples presented in this thesis use subdomai.

basis functions, although in theory, any preconditioning

developed for one set of basis functions may be modified to

treat another set of basis functions. This can be shown by

letting a rectangular NxM transformation matrix, T, map the V
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coefficients of the first set of N basis functions contained

in the vector f onto the coefficients of the second set of M

basis functions, f', according to [291

f = T f' (4.9). 0

Preconditioning Equation (4.3) from the left yields

P A f = P g (4.10).

Applying the transformation gives

T-1 P T T-1 A T f = T- I P T T- I g

= P' A' f' = P' T-1  g (4.11),

where P' =T-1 PT and A' =T-1 AT. The preconditioner, P,

developed for the original set of basis functions can be .

used for another set by forming P'. A similar result also a

holds for preconditioning from the right. The practical

matter of forming T and its Moore-Penrose inverse would be

non-trivial.

4.3 Preconditioners

Preconditioning is considered by many to be an art

rather than a science [11,34], since there is usually little

hope of examining a matrix and determining which

plpreconditioning (if any) will give the best performance. .
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Thus, preconditioning methods usually are tried on a class

of matrices to determine the best performer. The goal of

preconditioning is either to reduce the condition number of

an ill-conditioned system of equations to the point that the

solution accuracy is meaningful, or to place the excited

eigenvalues of the preconditioned iteration matrix in a

smaller region in the complex plane and achieve a

substantial decrease in computation time.

The literature has many references [6,35,36] to

preconditioning used for matrices which are sparse in the

traditional sense, that is, the majority of elements of the

matrix are zero. These matrices generally result from

finite-differencing partial differential equation, and tend I

to be banded matrices with considerable redundancy of

elements.

On the other hand, the moment-method matrices arising

from the use of subdomain basis and testing functions to

discretize the integral equations tend to be fully populated

and diagonally "strong" (although not quite diagonally

dominant), due to an integrable singularity when evaluating

Amm of Equation (4.4). The asymptotic behavior of the

elements of A is inversely proportional to the distance

between the basis and testing function raised to a power

greater than or equal to one-half. By numbering the basis

functions in sequential order, the magnitude of the elements

of the matrix can be made to decay away from the diagonal.

ofI
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These matrices also may be Toeplitz, block-Toeplitz,

circulant, block-circulant, or diagonally perturbed

variations on these types, if a proper numbering scheme on a

regular grid is used [21,32].

To precondition a matrix equation, a preconditioning

matrix, M, or its equivalent operation, that approximates A

is some sense is used. The preconditioned form of Equation

(4.3) may be written in one of three forms as

M-1 A x = M-1 b (4.12),

or

A M-1 y = b (4.13),

or

M- 1 /2 A M-1/2 z = M- 1 /2 b (4.14).

These three forms are left, right, and split

preconditioning. The split form requires M to be symmetric

positive definite. The condition number of the

preconditioned iteration matrices M-IA, AM - 1 , and

M-I/2AM - I /2 are equal. Differences in the convergence

rates of these three forms is attributable to the use of

different Krylov subspaces to construct the solutions.



112

Preconditioning of a matrix, A, is usually accomplished

by variants of one of three methods [6]. The first method

is to split A, or an approximation to A, as

A = D - L - U (4.15),

where D, L, and U are diagonal, lower triangular, and upper

triangular, respectively. Solving a matrix equation with

the matrix having one of these forms is fast and easy to

implement. Variants of this approach include successive

over-relaxation (SOR) and symmetric successive over-

relaxation (SSOR) [4). The SOR and SSOR preconditioners

have the drawback of requiring the user to supply a scalar

parameter at the outset of the solution algorithm. No

guidance is given as to the optimal choice of this

parameter. The major drawback of preconditioners based on

splitting is the necessity to access each element of the

matrix, a situation which is not easily compatible with

implicit matrix-vector multiplications (MATVECs) via FFT

methods. The SSOR preconditioned conjugate gradient

algorithm of Bjork and Elfving [37] is one candidate that

will be examined in Chapter Five.

The second approach used is to factor or decompose A, or

an approximation to A, as

A = L D U (4.16),

? ~ f~ JP I.% ....
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with L, D, and U defined as in splitting. If no

approximation is made, the preconditioner is exact since the

method becomes Gaussian elimination. The variants commonly
a

used are incomplete LDU decomposition, incomplete LU

decomposition, or incomplete Cholesky decomposition

[4, 6, 36, 38,39]. The decompositions are incomplete in the
f

sense that either the approximation to A has an imposed

sparsity pattern or the factors have an imposed sparsity

pattern. Sparsity pattern refers to an a priori

determination of which elements of the matrix will be forced

to zero and hence need not be stored or included in

calculations. The major drawback of preconditioners based

on this approach is again the necessity to access or

generate elements of the matrix, albeit to a lesser degree

than splitting based approaches. The performance of

preconditioners based on the diagonal, tri-diagonal, and

penta-diagonal section of the iteration matrix will be

examined in Chapter Five.

The third approach is to use a polynomial in the matrix

A as a preconditioner [40,41]. Although this requires more

MATVEC operations per iteration, this approach can be shown Vr

to reduce the total work. Current research [40] is focusing
I

on an adaptive algorithm to generate an optimal

preconditioning polynomial.

Other preconditioning methods which do not fall in the
three categories above still follow the basic premise of

finding an approximation in s'me sense to A that is easily

%%
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invertable. An example of this type is to use a circulant

matrix to approximate a Toeplitz matrix. The inverse of a

circulant matrix is quickly and easily obtained by means of

the fast Fourier transform [42,43]. In Chapter Five the

extent to which this approximation can serve as a

preconditioner will be examined.

The use of preconditioninc- for the matrices arising from

electromagnetic scattering problems is relatively new. Kas

and Yip [44) have achieved good results by use of

preconditioning from the right by (A + I)-i. Unfortunately,

this reference does not give the details of implementation

W,of this preconditioner. Van den Berg [9] has used the

preconditioned orthomin(0) and orthomin(l) algorithmb [11] J"

on the conducting flat strip problem, referring to them as
S'

the contrast-source truncation technique and the conjugate

contrast source technique, respectively. Mackay and McCowen I

[45] have suggested using orthomin(k), with k greater than

one, when the algorithms of van den Berg stagnate. The

preconditioning is accomplished in the spectral domain,

where the Fourier transform of the equivalent iteration

matrix diagonalizes. Inverting the diagonal gives the exact

inverse for the problem of a periodic array of conducting

flat strips. To achieve good results, the period of the

strips was 100 times the width of the strips. The

implementation used a 1024 point FFT to solve an order

seventeen Toeplitz matrix. As an attempt to extend this

idea, the inversion of the block diagonal matrix in the
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spectral domain as a preconditioner for conducting flat

plates has been tried, but with little success [46]. The

algorithm of van den Berg was generalized by, Peterson [21]

with satisfactory results obtained by inverting the main

diagonal of the matrix.

4.4 Implementation of Preconditioned Iterative Methods

The three iterative methods of Chapter Two may be used
for each of the preconditioned systems shown in Equations

(4.12) through (4.14). Due to several restrictions, only

preconditioning from the left is used in all three methods

in this thesis. First, the CHEBYCODE software is written to

accomplish only left preconditioning. Second, split

preconditioning is not used in this thesis due to the

restriction on the preconditioning matrix, M. To examine

the effect of different Krylov subspaces on the same -

problem, the biconjugate gradient algorithms for systems

preconditioned from the left (PCBCL) and t 'e right (PCBCR)
I

are used

The conjugate gradient algorithm may be manipulated to

form four different preconditioned methods which minimize

different error norms at each iteration [47]. Three of

these algorithms are used in Chapter Five. Followinc the %

notation of Ashby, Saylor, and Manteuffel, the algcrithms

will be referred to as PCGNE, PCGNR, and PCGNF.

Respectively, these minimize the norm of the error, residual

i'



116

and preconditioned residual. The implementation details for

these algorithms are given in Ashby etal [47].

The question of when to stop the iterative algorithm was

raised and one answer given in Chapter Two. The use of a

preconditioner which approximates the inverse of A may help

to refine the answer further. Ideally, the algorithm should

be stopped when the error in the solution falls below a

predetermined threshold. Rewriting Equation (2.8) for the

preconditioned system given in Equation (4.11) gives

I Ien1 I (M 1A) IM-rn
IHeoll -lIM-I 1 ro1

As was the case for Equation (2.8), this is an upper bound,

possibly a pessimistic one. The exact prec ditioner, A-1 ,

gives the equality in this equation with the condition

number of M- 1A equal to one. The use of a "good"

preconditioner would cause the condition number to be

"small" and also allow M-Irn to "closely" approximate en .

Equation (4.17) is more desirable than Equation (2.8) for

monitoring to determine the stopping point of the algorithm.

The determination of whether a preconditioner is "good" is

obtained by comparing either the eigenvalue estimates and

hence the condition number of M-1 A versus A or the relative

convergence rates of the preconditioned algorithm versus its

non-preconditioned equivalent.

4!
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4.5 Summary

This chapter has presented a brief overview of one of

the possible solution procedures to solve electromagnetic

scattering problems. The integral equation approach, which

is used for all the examples is this thesis, was

highlighted. The theory relating the eigenvalues of the

operator equation to the eigenvalues of the scaled moment-

method matrix was presented, as was the possibility of

changing from sub-domain basis and testing functions to

another choice.

The approach to preconditioning a matrix equation has

generally fallen into the categories of splitting the

matrix, factorizing the matrix, using a polynomial function

of the matrix, or using an easily invertable approximation

to the matrix. The pioneering work of van den Berg, Kas and

Yip, Mackay and McCowen, Chan, and Peterson in the field of

preconditioned iterative methods for solving electromagnetic

scattering problems provides a base to expand upon.

Finally, the choices in implementation and stopping

criterion were reviewed.

Z" 4,
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5. PRECONDITIONING OF TOEPLITZ SYSTEMS

5.1 Introduction

This chapter presents results for some of the

preconditioning methods introduced in Chapter Four. The

types of electromagnetic scattering problems for which the

matrix may have considerable structure are reviewed. The

occurrence of Toeplitz and block-Toeplitz systems motivates

this research. The results of preconditioning Toeplitz and

block-Toeplitz systems conclude this chapter.

When using subdomain basis and testing functions and

systematic numbering of those functions, Toeplitz and

block-Toeplitz matrices often arise in electromagnetic

scattering problems [21,48]. The occurrence of Toeplitz

forms is fortuitous, since the multiplication of a Toeplitz

matrix and a vector (MATVEC) is easily accomplished by means

of the fast Fourier transform (FFT). The symmetric Toeplitz

matrix of order N is completely described by its first row,

a substantial reduction in storage requirements over a

general matrix. The storage requirements for the FFT based

approach are greater than N, but still substantially less

than N2 required when storing the entire matrix. Peterson

[21] gives a more detailed discussion of the preceding.

A Toeplitz matrix results when the kernel in the

integral equation (e.g. Equation (4.1)), is convolutional.

The method of moments must be used with translationally
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invariant subdomain basis and testing functions. Changing

the scattering strip to a resistive or isotropic dielectric

material changes the diagonal of the matrix, according to

Equation (4.1). If the resistivity or permittivity is

constant throughout the scatterer, the matrix retains the

Toeplitz structure. Non-constant values of these

parameters would give a Toeplitz matrix perturbed along the p

main diagonal. The MATVEC is still easily accomplished by

splitting the equivalent matrix into a Toeplitz and diagonal

perturbation. The operations are not significantly p

increased, but the N values of the diagonal perturbation

must now be stored. If the surface has gaps in it, as

depicted in Figure 5.1, the Toeplitz form may still be

preserved by inclusion of a truncation operator in the

MATVEC. Examples of this operation are presented in Section

5.2.2

The electric field integral formulation of the two-

dimensional isotropic dielectric cylinder for TM-

polarization leads to a block-Toeplitz matrix with Toeplitz

blocks. The geometry of the cylinder need not conform to a

square grid to yield the Toeplitz structure since any cells

which do not have dielectric in them may be truncated out of

the MATVEC operation. For the TE-polarization, there are

two orthogonal components of the current, and the system is o.

two by two block Toeplitz with each of the blocks being

block-Toeplitz with Toeplitz blocks. For both cases, if

I
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Not Toeplitz

Perturbed Toeplitz

Figure 5.1 Examples of two-dimensional structures and the
type of resulting moment method matrix.
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the dielectric constant varies throughout the cylinder, the

diagonal of the matrix is perturbed.

The structures mentioned above do not cross-couplE tle

waves which are transverse electric (TE) and transverse

magnetic (TM) polarized to the infinite axis of the

scatterer. Thus, they may be analyzed for any incident wave

by decomposing the wave into the TE and TM parts and solving

two smaller problems. This simplification does not occur

for many other practical problems. For example, the flat

conducting plate shown in Figure 3.7 has two orthogonal

components of the current that cross-couple. The resulting

system is two by two block Toeplitz with each of the blocks

being block-Toeplitz with Toeplitz blocks.

Solution of a Toeplitz or block-Toeplitz system of

equations may be achieved by one of several algorithms

[4,49-51]. A comparative study of the execution times of

the Trench and Akiake algorithms with the

non-preconditioned CGNR on several electromagnetic

scattering problems came out in favor of CGNR [48]. This is

one motivation for the study of preconditioned iterative

methods to solve Toeplitz and block-Toeplitz systems.

Also, a minor pecturbation to the Toeplitz form disallows

the use of conventional Toeplitz algorithms.

'a
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5.2 Preconditioning

5.2.1 Toeplitz Systems

The use of a preconditioned iterative method to solve an

equivalent Toeplitz system was proposed by van den Berg [91

as discussed in Chapter Four. The idea has recently been

advanced by Strang (52] and shown to give "super-linear"

convergence for real matrices with geometrically decreasing

diagonals [531. The idea presented herein parallels Strang,

although the matrices differ. The Toeplitz matrix, T, is

split as the sum of a circulant matrix, C, and an error

matrix. Since the Toeplitz matrices arising from

electromagnetic scattering problems may have decreasing

magnitudes away from the main diagonal, the circulant matrix

is obtained by copying the N/2 central diagonals from T and

completing the circulant. The error matrix has non-zero
• .5

elements only in the corners, as shown in Figure 5.2. With

T having a strong diagonal and decaying magnitudes away from

the diagonal, the error matrix is minimized in the infinite

norm [4].

The first problem considered involves a perfectly

conducting flat strip similar to that shown in Figure 3.7

with a width of twelve wavelengths. The electric field

integral equation was discretized using 120 pulse basis

functions and 120 Dirac delta testing functions [2], for the

TM-to-z polarization. Table 5.1 shows the number
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Figure 5.2 The decomposition of a symmetric Toeplitz
matrix as the sum of a circulant matrix and an
error matrix for examples of order six and
seven.
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of iterations required to reduce the residual norm to

1.OE-4 for all the previously discussed algorithms except

CHEBYCODE. The values shown in Table 5.1 for CHEBYCODE are

for the preconditioned residual norm, which the algorithm

outputs when preconditioning is used. The preconditioning

methods used are the incomplete lower-upper decomposition

(ILU), and approximate circulant inverse. In the

preconditioning description, "perturbed" refers to setting

the initial guess, x0, to [ 0.01, 0, 0, ....0 ]T. Otherwise,

the initial guess was equal to zero. The algorithm acronyms

are defined in Section 4.4. In the absence of

preconditioning, the PCGNR and PCGNF algorithms are both

equivalent to the previously discussed CGNR algorithm. The

PCBCL and PCBCR algorithms are also equivalent in the

absence of preconditioning. The execution times on the

Apollo DOMAIN 3000 computer for each the entries of Table

5.1 are given in Table 5.2. The CHEBYCODE (CHEB) algorithm

stops when the product of the preconditioned residual norm

and the estimated condition number of the matrix is less

than the desired error tolerance. Thus, the CHEB execution

times listed in Table 5.2 are higher than necessary to '

reduce the residual norm to 1.OE-4.

For the wave incident from zero degrees, the biconjugate

gradient method without preconditioning was not able to

achieve convergence. The reason for this is readily seen by

examining the coefficient ao. With incident plane waves and

'M-
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120 uniformly spaced collinear testing functions, the -

numerator of ao can be written as

120
< ror0 > = eJ 4n i Ax cos 8 5.1).i=l

This quantity (see Figure 5.3) suggests the biconjugate

gradient is very sensitive to variations in ro. The failure

to converge for e equal to zero degrees is due to the flaw

in the algorithm addressed in Chapter Two. Equation (5.1)

can be shown to be the same as the array factor from a

uniformly spaced array of equal amplitude and equal phase

sources with spacing twice that of the testing functions %

[50]. For this case the angles, 9null, at which the

numerator of (X0 will vanish are given by the real values of

m arccos M (5.2),
2 N Ax

where m = !,2,3,..,q < 2 N Ax. N is the number of sample %

points spaced Ax apart. Figures 5.4 and 5.5 show the base

ten logarithm of the residual norm versus number of

iterations. For 8 equal to 0.0 and 0.1 degrees, the 5,

algorithm did not converge after 300 iterations on the order t
120 system. The cyclical variation of the residual norm for

these two values of 9 continues for the full 300 it--rations.

Equation (5.2) also predicts a null at 16.616 degrees.

Figure 5.5 shows the residual norm for this value ard also

%
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angle for the biconjugate gradient algorithm on
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for 20.0 degrees where the value of Equation (5.2)

approaches a local maximum, highlighting the sensitivity of

this algorithm to the initial residual. 4,

For other geometries and choices of testing functions

the task of predicting when the biconjugate gradient method

will stagnate is non-trivial. A solution to this problem

is to monitor the value of a0 . A non-zero initial guess is

usually effective when CzO is close to the precision of the

computing machinery. As an example, an initial guess of

0.01, 0, 0 .... 0 ]T was used for 0 equal to zero degrees.

The value of r0 is thus changed by one one-hundredth of the

first column of the matrix. The algorithm then converged to

a residual norm of 1.OE-4 in twenty-eight iterations. The

occurrence of an extremely small coefficient, an, for n

greater than zero has not been observed except as noted in

chapter three for the biconjugate gradient based multiple

excitation algorithm. A perturbation to the solution after

the first iteration would necessitate a restart of the

algorithm. However, this approach is much preferable to the

algorithm stagnating and never obtaining a solution.

The use of preconditioning from the left may also

alleviate this problem. The numerator of ao then becomes

< M-ir0 , M-ir0 >. However, as seen in Table 5.1, this was

not effective for the circulant inverse since the equivalent

preconditioning matrix was unitary. These possible

solutions to the stagnation problem of the biconjugate

gradient algorithm do not eliminate the problem, but merely

X"M'24.
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shift the excitation that will cause stagnation away from

the one presently under consideration.

The behavior of the residual norms for these algorithms

without preconditioning is demonstrated in Figure 5.6 for

the twenty degree incident angle case. Since the CGNR

algorithm minimizes the norm of the residual at each

iteration, the residual norm shows a monotonic decrease.

The residual norm of the other two algorithms do not show

the same behavior. %

Figure 5.7 shows the typical convergence of the

CHEBYCODE algorithm for the case of twenty degree incidence,

and tri-diagonal preconditioning. During the first twelve

iterations, the preconditioned residual grows until the

adaptive portion of the algorithm generates estimates of

extreme eigenvalues. As discussed in chapter two, these

estimates are then used to update the parameters of the

ellipse which determines the region of convergence. The

algorithm then exhibits almost linear convergence with these

optimal parameters. For this example, the ellipse was

initially a circle centered at 1 + jO in the complex plane,

with a radius of one. After the twelfth iteration, the

optimal ellipse had foci at 0.88 +jO and 3.34 +jO.

In Tables 5.1 and 5.2, the reference to symmetric means

the use of the shortcut possible in the biconjugate gradient

algorithm if the matrix is complex syrmetric (as are many

moment-method matrices). The vectors ri and Pi are then

complex conjugates of ri and pi, respectively. Since this

V
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matrix is symmetric, only one matrix-vector multiplication

(MATVEC) operation or its equivalent per iteration is

necessary. This time-saving feature is a significant

advantage for the algorithm of Jacobs, which reduced the

execution time by approximately one-half (see Table 5.2)

Unfortunately, this shortcut may not be used with a

preconditioned matrix unless it is symmetric. Symmetric

preconditioners, such as ILU and the approximate circulant

inverse, do not guarantee a symmetric iteration matrix

unless the original matrix and the preconditioner commute.

Polynomial preconditioning would be an excellent candidate

for this algorithm, since a matrix naturally commutes with

itself.

Figure 5.8 shows the residual norms for the PCGNF

algorithm using the three preconditioning methods with an

incident ancrle of twenty degrees. The circulant based

preconditioner exhibits the worst performance at early

iterations, but overall, is better than the ILU based

preconditioners. This phenomenon is due to the different

Krylov subspaces used with each preconditioning.

The double entries for the tri-diagonal preconditioned

CHEBYCODE algorithm in Tables 5.1 and 5.2 reflect different

choices of the user supplied initial values of the

parameters, d and c. The first set of entries resulted from

the choice of one and zero for d and c, respectively. Az

the end of the run, the algorithm generated optimal values

of d and c (2.167 and 1.150) were used for a next run. This

S - VS~ ,

. ]u ' Y- SIS~., ' ~ ] , , . .. . .
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achieves the smallest convergence factor of 0.2792 and hence

the fastest convergence possible. The small relative

difference in number of iterations is a reflection of the

ability of the adaptive portion of CHEBYCODE algorithm to

find the optimal values of these parameters early in the

run. The comparison of CHEBYCODE with the conjugate

gradient based algorithms is not indicative of the potential

of CHEBYCODE, since the matrix used in this problem is not

poorly conditioned

5.2.2 Perturbed Toeplitz Systems

To test the algorithms and preconditioners used in the
above example on diagonally-perturbed Toeplitz systems, the

scattering from a resistive strip was formulated in the same

manner as the example used in the previous section. The

incident wave was again TM to the infinite axis of the

twelve wavelength wide strip. The resistivity, R, of the

strip varied as a function of the position along the strip,

x, according to

R(x) = Rmax sin((-) (5.3).

The ends of the strip were located at x=0,L. Rmax was set

at 100.0 for a "mild" perturbation of the Toeplitz form. A

"severe" perturbation of the Toeplitz form was achieved by

)
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setting Rmax to 1000.0. The number of iterations required

to achieve a residual norm of 1.0E-4 and the execution

times on the Apollo DOMAIN 3000 computer are shown in Tables

5.3 and 5.4 for the "severe" and "mild" perturbations,

respectively. Again, the entries for the CHEBYCODE

algorithm are for the preconditioned residual.

The double entries for the non-preconditioned PCBCL 0

algorithm in Tables 5.3 and 5.4 reflect the use of the

general biconjugate gradient algorithm and the symmetric N

shortcut version. Since the MATVEC operation dominates the

execution time, the execution time using the symmetric

shortcut version is roughly one-half that of the general

algorithm.

With the diagonal of the matrix no longer a constant

value, the question of what value to use for the diagonal

element of the circulant approximation arises. Table 5.5

shows the various choices used in Figures 5.9 and 5.10. The

PCGNF algorithm was used in all cases. The choice of using

the smallest element of the diagonal of the perturbed

Toeplitz matrix as the diagonal element of the circulant

approximation is obviously a pocr choice. The differences

in the convergence rates of the other methods are

inconsequential.

As the diagonal of the Toeplitz matrix becomes more

perturbed, the approximate circulant inverse becomes less

effective, while the methods based cn incomplete LU

decomposition become more effective. Preconditioning by the
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TABLE 5.5

THE FIVE METHODS OF GENERATING THE CIRCULANT APPROXIMATION
TO A DIAGONALLY PERTURBED TOEPLITZ MATRIX. A DESCRIPTION OF
THE METHOD USED TO GENERATE THE VALUE OF THE CIRCULANT
DIAGONAL AND THE VALUES USED FOR THE "MILDLY" AND "SEVERLY"
PERTURBED CASES ARE GIVEN.

VALUE
METHOD USES MTLDLY SEVERLY 

CIRC 1 Smallest (59.2,85.7) (59.2,85.7)
diagonal
element

CIRC 2 Arithmetic mean (122.3,85.7) (690.5,85.7)
of all diagonal
elements

CIRC 3 Largest (159.2,85.7) (1059.2,85.7)
diagonal
element

CIRC 4 Geometric mean (102.3,91.53) (288.2,166.3)
of largest and
smallest elements

CIRC 5 Arithmetic mean (109.2,85.7) (550.2,85.7)
of largest and
smallest elements
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-~**~*-~ *~-.." ~* .4 U'. U~- .4 .4 . .

.4. . 4.N*~ ~ 'UU .



144

-

E -2-
0

" circ. 1m 
- - circ. 2

(n -- circ. 3

P-- circ. 4
-3 -6- circ. 5

0
.- 4

-5.r r--r-
0 5 10 15 20

Iterations
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inverse of the main diagonal is perhaps the most attractive

for severely perturbed systems, since no additional memory

is required.

Another type of perturbation to the Toeplitz form of a

scattering problem can occur when "holes" are placed in a

structure that was previously Toeplitz. Four structures

were considered to examine the effect of this perturbation.

In all four cases, the polarization of the incident wave was

TM to the infinite axis of the scattering strip. The first

case (referred to as "pec") is the twelve wavelength wide

perfectly conducting flat strip (see Figure 3.7). The

second case (pec hole) is a perturbation of the first, where

the portion of the strip corresponding to the positions

occupied by basis functions fifty through fifty-five and

seventy through seventy-three is removed. The matrix

equation

A x =b (5.4),

now becomes

A E x =E b (5.5),

where E represents a truncation operator. For the case just

described, this operator is equivalent to a diagonal matrix

with an entry of one if the basis function is present, and

e - IF
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zero, otherwise. In this light, the work of van den Berg 0

[54] may be viewed as using the preconditioned equation

A-1 8 A 8 x = 8 A- ' G b (5.6).

The third (rtap) and fourth (rtap hole) cases considered are

the scattering from a resistive strip with a resistive taper

given by

7[X
R(x) = 1000.0 (1.0 - sin(-)) (5.7),

with the definitions of x and L as before. The fourth case

differs from the third in that basis functions fifty through I,

fifty-five are removed. Table 5.6 lists the number of

iterations required to obtain a residual norm of 1.0E-4 for

each of these cases using the modified PCGNF algorithm. The

MATVEC involving the matrix A was changed to give the

necessary 9 A (, and the equivalent preconditioning matrix,

M- 1 , became E M-1 G.

The perturbation of the perfectly conducting strip does

not significantly affect the number of iterations required, .

or the convergence behavior of the algorithm. Perturbing

the resistive strip does leads to very slow convergence on

this order 120 problem. Other perturbed structures tried

gave results between these two extremes. The increased

number of iterations seems to be required whenever a break

A.
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TABLE 5.6

NUMBER OF ITERATIONS REQUIRED BY THE ALGORITHM PCGNF TO

OBTAIN A RESIDUAL NORM OF 1.OE-4 FOR THE PRECONDITIONERS

AND THE PROBLEMS SHOWN. IN ALL CASES THE WAVE WAS INCIDENT

FROM TWENTY DEGREES.

PRECONDITTONER PEC PEC HOLE RTAP RTAP HOLE

NONE 34 34 20 68

DIAGONAL - - 13 22

TRI-DIAGONAL 14 17 9 13

PENTA-DIAGONAL 16 17 9 13

CIRCULANT 11 16 22 59

-w2

.4

.
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in the structure significantly changes the local behavior of

the currents that were flowing in the non-perturbed case.

The primary conclusion to be drawn for the data of Table 5.6

is that preconditioners based on the entire structure appear

to still be effective in reducing the number of iterations

required when the problem is perturbed by "holes".

5.3 Preconditioning of Block-Toeplitz Systems

5.3.1 Preconditioning by Block-circulant approximation

The physical problems investigated up to this point have

been restricted to flat, two-dimensional structures with

the current flowing in only one direction. The success of

the preconditioning methods for Toeplitz forms gives

encouragement for the attack on block-Toeplitz forms. A

problem giving a symmetric block-Toeplitz form is the TM

scattering from a dielectric cylinder [55]. The particular

problem shown in Figure 5.11 was formulated using

eighty-one square pulse basis functions and eighty-one

Dirac delta testing functions. The complex relative

permittivity of the material was chosen as 2.56 +j 2.56, and

the width of each cell in the grid was chosen as two-tenths

of a wavelength. This is twice the largest value allowable

under standard rules-of-thumb for accurate solutions, but

was necessary to obtain an example that converged relatively

slowly without preconditioning. With the numbering of basis

' " - ' . . - i ', ' n ' " '' -[ ' " "' 
"

+- ' - " ,. .
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functions as shown, the resulting moment-method matrix is

order nine block-Toeplitz, with each of the blocks an order

nine Toeplitz matrix. This case may be approximated by a

order nine block-circulant matrix with order nine circulant

blocks, which is easily inverted by use of a two-dimensional

fast Fourier transform (FFT) [42]. Figure 5.12 shows the

convergence of the PCGNF algorithm with no preconditioning,

tri-diagonal preconditioning, and block-circulant

preconditioning. The poor performance of the preconditioned

methods is attributable to the fact that the off-diagonal

blocks have relatively large elements, especially along the

diagonals. This example was repeated for a fifteen by

fifteen grid of cells (see Figure 5.13), with no success.

5.3.2 Preconditioning by SSOR

The flaL c~:.1ting -late (see Figure 3.12) was used

extensively in chapter three and is an orthodox example for

benchmarking solution procedures [56]. This problem

involves two components of current, and the cross-coupling

between them. The resulting moment-method matrix is a twc

by two block matrix. Each of the blocks is block Toeplitz

with Toeplitz blocks. The ideas of the preceding sections

do extend to this structure, but are not effective.

%
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The symmetric successive over relaxation preconditioned

conjugate gradient algorithm of Bjork and Elfving [37] is a

memory efficient implementation of

M- 1 AH A M- H z = M-1 AH b x = M-H z (5.8),

where the preconditioning matrix is given by

M-  = ( D + O)L ) D-1 / 2  (5.9).

The preconditioning is accomplished by two sweeps through

the columns of the matrix A, and requires two more vectors

of length N than PCGNR. Two drawbacks of this method are

the necessity to access each element of the matrix A, and no

beforehand knowledge of the optimal choice of the

parameter CO.

For testing this algorithm, the plate size was set at

nine-tenths of a wavelength on each side. The formulation

and matrix storage scheme was the same as used for the

multiple excitation problem in chapter three. Figure 5.14

shows the convergence of this algorithm for various choices

of a in the allowed range of zero to two. The incident

angle was 6 equal to sixty degrees and 0 equal to twenty-two

degrees. For this problem and formulation, the

preconditioner becomes a scaled identity matrix when 0) is

eaual to zero. This scales the matrix equation causing a

rotation and scaling of the eigenvalue spectrum of A, but no

S A, P
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change in the condition number of A. Thus, it may be

considered as equivalent to no preconditioning. The optimal

value of 0 is close to 0.8 The execution times for o equal

to zero and 0.8 were 1980 and 1080 seconds, respectively.

5.3.3 Preconditioning by ILU

Preconditioning of the flat plate problem described in

the previous section was attempted by diagonal, tri-

diagonal, and penta-diagonal incomplete lower-upper (ILU)

decomposition, with little success. The distribution of

normalized matrix elements magnitudes (see Table 5.7) has

relatively few large elements. The location in the matrix

of all elements with a normalized magnitude of greater than

0.1 is shown in Figure 5.15. To use the ILU decomposition

in a memory efficient manner, the row and column reordering

algorithm of Puttonen [57] was used to reduce the bandwidth

from eighty-one to thirty-one. By considering only the

elements with a normalized magnitude of greater than 0.4,

the bandwidth was reduced to eighteen. The inverse operator

was implemented by storing a reordered copy of the centrl I

section of the matrix in standard sparse matrix storage

format [58]. Table 5.8 shows the results of using these

preconditioners. The usefulness of this preconditioner is

limited by the large amount of storage necessary, and thus A

it would not be practical for larger problems.

S.
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TABLE 5.7

DISTRIBUTION OF NORMALIZED MATRIX ELEMENT MAGNITUDES FOR THE
ORDER 144 MATRIX ARISING FROM THE SCATTERING FROM A FLAT
PLATE. h

DECILE NUMBER PERCENTAGE
1 19356 93.3
2 472 2.3
3 0 0.0
4 0 0.0
5 0 0. 0 O,

6 764 3.7 0
7 0 0.0
8 0 0.0
9 0 0.0
10 144 0.7

I
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TABLE 5.8

NUMBER OF ITERATIONS AND EXECUTION TIME ON THE APOLLO DOMAIN
3000 COMPUTER REQUIRED TO OBTAIN A RESIDUAL NORM OF 1.0E-4
FOR THE ITERATVE METHODS LISTED ON THE FLAT PLATE PROBLEM.

ALGORITHM

PRECONDITIONING PCGNR PCGNF PCGNE PCBCL PCBCPl

ITERATIONS

NONE 83 - 87 67 -

36-DIAGONALS 35 40 38 21 21

62-DIAGONALS 13 15

EXECUTION TIMES (SECONDS)

NONE 1264 - 1322 1020 -

36-DIAGONALS 660 780 720 428 426

62-DIAGONALS 3304 362
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5.4 Summary

This chapter has examined the performance of various

preconditioning methods when applied to Toeplitz, block-

Toeplitz, and perturbed versions of these forms. The

results for the Toeplitz and perturbed case indicate that

the preconditioner based on the circulant approximation

achieves excellent time savings for the non-perturbed

Toeplitz form. With a diagonal perturbation, this

preconditioner becomes less effective as the perturbation

becomes larger, while the preconditioners based on

incomplete lower-upper (ILU) decomposition become more

effective.

The canonical problem of the perfectly conducting flat

plate and its layers of structure was treated with the

symmetric successive over-relaxation preconditioned

conjugate gradient algorithm. This algorithm used fewer

iterations, but did not show any significant time advantage.

The reordered ILU preconditioner was effective, but very

memory intensive.

A
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6. SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

The solution of scattering problems will continue to be

an area of practical interest for the foreseeable future.

The memory efficient iterative approaches, first instituted

by the spectral iterative technique [59], enable larger

problems to be solved. This thesis has concentrated on more

efficient methods for obtaining solutions with these

algorithms. ,

The first area investigated was the use of the conjugate

gradient and biconjugate gradient algorithms to solve the

multiple excitation problem. The results of Chapter Three

showed that both of these algorithms may effectively solve

many systems of equations simultaneously. The conjugate

gradient based algorithm (MCGNR) was more robust than the

biconjugate gradient based algorithm (MBCG), although both

algorithms were able to achieve substantial reduction in .
'-U

execution time. The examples presented were done on scalar

computi.g machinery. The performance of the algorithms

could significantly change on other machines with different

architectures, especially on the parallel processing

machines such as the CalTech Hypercube. The use of a

composite system in some cases was beneficial, and in some

cases, not. Investigation into enhancements to the basic

algorithms should be fruitful.

The other approach to achieving a quicker olution to

the scattering problems is through the use ofthe,

U,'
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preconditioning. Experience has shown that extremely ill- 0

conditioned matrices in numerical electromagnetics usually

are an indication of a problem in the formulation of the

system of equations. The existence of homogeneous solutions

to the partial differential eqiations can not be eliminated

by the use of preconditioning. This fact, along with the

observations of Peterson and Mittra [31], can be useful

feedback to the analyst. Preconditioning in this thesis has

been used on systems of equations with moderate condition

numbers to attempt to obtain convergence in a shorter time.

In cases where the physical problem generates Toeplitz

systems or perturbations of these, preconditioning may help
I

achieve this goal. The preconditioners used in chapters

four and five relied on exploiting a significant feature of

the matrix. The next step in the search would be to use

polynomial preconditioning. This, teamed with the symmetric

biconjugate gradient algorithm, seems to be a logical choice

for future work.

Three different iterative algorithms were compared. The

performance of the conjugate gradient algorithm has been

previously studied for equations representing

electromagnetic scattering problems [21]; the behavior of

the biconjugate gradient and CHEBYCODE algorithms has not
been published to date for these problems. This srudy has

shown that all three algorithms can be very effective for

scattering problems, provided that the CHEBYCODE algorithm

is used with preconditioning.
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The biconjugate gradient algorithm (BCG) was shown to be

sensitive to the value of the initial residual, and in some

cases, the algorithm was unstable. An effective solution to

this problem was presented in the form of a perturbed

initial guess. The conjugate gradient algorithm was always

stable, but usually took more iterations and execution time

than BCG. The CHEBYCODE algorithm, due to its restriction

on the eigenvalue spectrum of the matrix, often diverged.

The use of preconditioning to move the spectrum into the

right half of the complex plane was effective. This

algorithm, although usually the most costly of the three in

terms of execution, became more competitive as the condition

number of the matrix became larger.

Chapter Two reviewed the relationship between the as,

eigenvalue spectrum of the matrix and the convergence rate

of the iterative algorithms. The work of Peterson et al.

[13] has shown the relationship between the eigenvalue

spectrum of the continuous operator and the resulting moment

method matrix. One of the final links in the problem

characterization, the eigenvalue spectra of various

operators for many different shapes of scatterers, needs to

be studied. By cataloging many of these, significant

features and trends may be exploited. This knowledge should

prove extremely useful when selecting a polynomial

preconditioner, whether the integral equation or

differential equation approach is used.

' . .,..-.,.., .: ..-. %< -.< .. ,. .- .. ... . : . .:. ... '..,
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